Appendix A – Masterplan

LEGEND Residentia**l** Emp**l**oyment Local Centre & Plaza Schoo**l** Link Road ----Proposed Vegetation Proposed Open Space Proposed Infiltration Basins i pi Proposed Footpath Link 1." Public Right of Way 1.1 Recreational Route Brid**l**eway Existing Road 1. Surrounding Countryside . . Urban Area ₹, North Walsham Train Station Existing Green or Open Space Secondary Local Facilities LEAP <u>____</u> NEAP ~ Allotments Sport Provision

Appendix B – Percentage Impact Assessment

										%	Impact Assessmen	t													
							AM Pe	ak Hour										PM Pea	ak Hour						
					2029					2036					2029							2036			
			DM		DS			DM	DS				DM	C	DS				DM		DS	S			
			Total \	/ehicles		% increase	•	Total	Vehicles		% increas	e	Total V	/ehicles		9	6 increase	•		Total Ve	hicles		9	% increase	
			Turn Arm	Turn	Arm	Turn	Arm	Turn Arm	Turn Ar	m	Turn	Arm	Turn Arm	Turn	Arm	Turn		Arm	Turn Arr	m T	Turn	Arm	Turn		Arm
	A to C		0	(0	0%		0	13		0%		15	2		-86%			3		21		600%		
	A to B		2	2	2	3% 0		1	8		700% 53		4	4		-1%			4		16		300%		
	A to D	N Bradfield	0 2	(2	0%	3%	0 1	33	54	0%	5300%	0 19	0	6	0%	-13	-67%	0	7	32	69	0%	62	886%
	B to A		2	2	2	-5%		3	19		533%		4	4		0%			5		13		160%		
lunction 1 -	B to C		354	354	4	0% 4		372	293		-21% 63		558	564		1%			571		476		-17%		
Bradfield Road /	B to D	W Cromer	0 356	4	4 360	0%	1%	0 375	126	438	0%	17%	0 562	8	576	0%	14	2%	0	576	197	686	0%	110	19%
Cromer Road	C to B		480	478	3	0%		507	375		-26%		448	428		-5%			475		348		-27%		
Priority Junction /	C to A		0	3	3	0% 8		0	32		0% 1		0	0	1	0%			0		15		0%		
Proposed Road	C to D	E Cromer	0 480	7	7 488	0%	2%	0 507	101	508	0%	0%	0 448	27	454	0%	6	1%	0	475	99	462	0%	-13	-3%
	D to A		0	()	0%		0	45		0%		0	0		0%	-		0	-	20	-	0%	-	
	D to B		0	7	7	0% 46		0	225		0% 343		0	4		0%			0		185		0%		
	D to C	Link Road	0 0	30	46	0%	-	0 0	73	343	0%		0 0	18	22	0%	22	_	0	0	86	291	0%	291	
	Junction	Lintroda	838		897	59	7%	883		1343	460	52%	1029		1058	0,0	29	3%		1058		1508	0,0	450	43%
	A to B		78	60	2	-12%	170	83	0	1010	-100%	0270	93	102	1000	10%	20	070	87	1000	0	1000	-100%	100	1070
	A to C	W Cromer	277 355	320	308	12/0 43	12%	288 371	380	380	32%	2%	481 574	/102	503	2%	10	3%	101	581	580	580	17%	-1	0%
Junction 2 - Cromer	R to A	W Cromer	122	110	0.000	17%	12/0	105	300	300	100%	2 /0	122	430	535	2.70	13	570	494	301	000	500	10.0%	-1	070
Road / Greens	B to C	S Croope	20 161	27	7 147	-17% -14	09/	24 120	0	0	-100% -139	100%	60 192	04	150	-32%	22	100/	90	144	0	0	-100%	111	100%
Road Priority	BIOC	5 Greens	30 161	31	14/	21%	-9%	34 139	0	0	-100%	-100%	60 183	00	150	10%	-33	-18%	54	144	0	0	-100%	-144	-100%
Junction	C to B		69	/(1 150	1% 34	001	66	0		-100% 40	001	81	08	450	-1%	50	100/	80	400	0	400	-100%		101
	C to A	E Cromer	350 419	383	3 453	10%	8%	402 468	508	508	26%	9%	325 406	378	458	16%	52	13%	380	460	466	466	23%	6	1%
	Junction		935		997	63	7%	978		888	-90	-9%	1163		1200		38	3%		1185		1046		-139	-12%
	A to D		29	29	9	1%		29	30		3%		54	54		0%			55		53		-4%		
	A to C		250	250	0	0% 2		263	264		0% 32		298	296	i	0%			300		324		8%		
	A to B	N B1145	168 447	170	0 449	1%	0%	171 463	201	495	18%	7%	191 543	193	543	1%	0	0%	194	549	209	586	8%	37	7%
	B to D		55	62	2	13%		54	53		-2%		137	152		11%			145		143		-1%		
Junction 3 - B1145	B to C		174	223	3	28% 58		176	210		19% 55		263	268		2%			264		276		5%		
/ A149 / A149	B to A	W Cromer	<mark>95</mark> 324	97	7 382	2%	18%	103 333	125	388	21%	17%	141 542	148	568	5%	27	5%	154	563	181	600	18%	37	7%
Cromer Road /	C to D		0	(0	0%		0	0		0%		23	20		-13%			30		29		-3%		
Cromer Road	C to B		235	265	5	13% 29		283	285		1% 15		213	264		24%			266		252		-5%		
Signalised Junction	C to A	S A149	250 485	249	514	0%	6%	271 554	284	569	5%	3%	258 494	233	517	-9%	24	5%	279	575	283	564	1%	-11	-2%
	D to C		2	2	2	15%		2	2		0%		9	9		1%			9		9		0%		
	D to B		6	6	6	0% 0		6	6		0% 0		9	9	1	2%			9		9		0%		
	D to A	E Cromer	3 11	3	3 11	2%	3%	3 11	3	11	0%	0%	0 18	0	18	0%	0	1%	0	18	0	18	0%	0	0%
	Junction		1267		1356	89	7%	1361		1463	102	7%	1597		1647		51	3%		1705		1768		63	4%
	A to D		140	140)	0%		148	148		0%		149	149		0%	-		148		148		0%		
	A to C		0	()	0% 0		0	0		0% 0		0	0		0%			0	F	0		0%		
	A to B	N Mundeslev	0 140	(140	0%	0%	0 148	0	148	0%	0%	0 149	0	149	0%	0	0%	0	148	0	148	0%	0	0%
	B to D	TV Mundesicy	31	34	1	11%	070	32	32	140	0%	070	97	101	145	4%	0	070	98	140	99	140	1%	0	070
Junction 4 - Cromer	B to C		0	(1	0% 8		0	02		0% -3		0	0		0%			0	F	0		0%		
Road / Mundesley	B to A	W Cromer	44 74	15	2 83	11%	11%	13 75	40	72	-7%	_1%	71 168	82	183	16%	15	0%	74	172	73	172	-1%	0	0%
Road / Market	CtoD	W Oromer	126	12/	1	-2%	1170	134	127	12	-5%	470	133	123	100	-7%	10	570	138	172	140	172	1%	0	070
Street / Aylsham	C to B		120	12-	1	-276		134	127		0% 19		133	123		-1 /6			130	-	0+1		0%		
Road Signalised		S Avicham	240 275	250	274	0%	0%	259 202	294	411	10%	59/	265 209	251	274	5%	24	6%	292	120	205	125	5%	15	10/
Junction	DtoC	S Ayishani	249 375	250	5/4	0%	0%	236 392	204	411	10%	5%	203 390	201	3/4	-5%	-24	-0%	202	420	295	430	5%	15	4%
	DioC		0			0%		0	0		0%		0	0		0%			0	-	0		0%		
	DIOB	E Mariat	0			0% 0	00/	0	0	0	0% 0	00/	0	0		0%	0	00/	0		0	0	0%	0	00/
	DIOA	E Market	0 0	(500	0%	0%	0 0	0	0	0%	0%	0 0	0	705	0%	0	0%	0	740	0	0	0%	0	0%
	Junction		590		596	1	1%	615		631	16	3%	/15		705	00/	-9	-1%	0	740	0	755	00/	15	2%
	A to B		0	(<u>,</u>	0% 0	001	0	0		0% 0	001	0	0		0%		001	0		0		0%		001
Junction 5 -	A to C	E Aylsham	0 0	(0	0%	0%	0 0	0	0	0%	0%	0 0	0	0	0%	0	0%	0	0	0	0	0%	0	0%
Aylsham Road /	B to A		141	144	1	2% 3		146	172		18% 26		115	100		-13%			115		147		28%		
Park Lane Priority	B to C	W Aylsham	0 141	(144	0%	2%	0 146	0	172	0%	18%	0 115	0	100	0%	-15	-13%	0	115	0	147	0%	32	28%
Junction	C to B		150	143	3	-5% -12		168	208		24% 30		127	146		15%			133		138		4%		
	C to A	S Park	235 385	230	373	-2%	-3%	247 415	237	445	-4%	7%	284 411	275	422	-3%	10	3%	306	439	288	426	-6%	-13	-3%
	Junction		526		517	-9	-2%	561		617	56	10%	526		522		-4	-1%		554		573		19	3%
	A to B		110	104	1	-6% -8		123	160		30% 40		93	107		15%			98		105		7%		
	A to C	E Aylsham	<mark>39</mark> 149	38	3 142	-3%	-5%	<u>44</u> 167	47	207	7%	24%	34 127	39	146	14%	19	15%	37	135	33	138	-11%	3	2%
Junction 6 -	B to A		132	136	6	3%		137	162		18% 26		99	84		-15%			97		130		34%		
Skevton New Road	B to C	W Aylsham	2 135	2	2 138	-2%	3%	2 139	3	165	50%	19%	11 110	7	91	-39%	-19	-17%	10	107	13	143	30%	36	34%
Priority Junction	C to B		3	3	3	2%		3	3		0%		5	5		-1%			5		5		0%		
the second se	C to A	S Skeyton	10 13	10	13	-1%	-1%	10 13	10	13	0%	0%	16 21	16	21	0%	0	0%	17	22	17	22	0%	0	0%
	Junction		297		293	-4	-1%	319		385	66	21%	258		258		0	0%		264		303		39	15%
	A to D		73	52	2	-28%		77	0		-100%		86	82	1	-5%			82		0		-100%		
	A to C		25	32	2	26% -9		24	0		-100% -150		23	32	!	38%			20	F	0		-100%		
	A to B	N Greens	50 148	55	5 139	10%	-6%	49 150	0	0	-100%	-100%	65 174	69	183	6%	8	5%	65	167	0	0	-100%	-167	-100%
	B to D		131	114	1	-13%	0,0	137	194	-	42%		103	98		-5%	~	0,0	115		201	v	75%		
Junction 7 - B1145	BtoC		0	10	2	0% 0		0	0		0% 23		5	5		3%			6	F	6		0%		
Ayisham Road /	B to A	W Aylsham	31 162	27	7 161	22%	0%	34 171	0	194	-100%	13%	46 154	50	161	26%	7	5%	41	162	0	207	-100%	45	28%
Greens Road /	CtoD	Ayisilaili	34	31		-14%	070	34 171	34	1.04	0%	1370	10	14	101	-27%	,	570	21	102	36	201	71%	-10	2070
Tungate Road	C to P		4	28	1	_1% 0		4			0% -5		13	14		-21 /0			21	H	30		00/		
Crossroads	CtoA	S Tuncata	4 5 40		40	06%	00/	4 5 40	4	20	100%	100/	4	4	44	-0%	F	109/	4	47	4	40	1000/	7	150/
lunction	C to A	STungate	5 43	1(J 43	90%	0%	5 43	0	აბ	-100%	-12%	23 46	23	41	4%	-5	-10%	22	4/	0	40	-100%	-1	-15%

JUNCTION	Dia		40		10		24.0/			40		20		0470/			40	1	40	440/			40		24	0.40/		
	DIOC		13	<u>,</u>	10		-21%			12		38		217%			13	ŀ	12	-11%			16	-	31	94%		
	D to B		126	6	126		0%	-28		142		230		62%	9		81		78	-4%			81		173	114%		
	D to A	E Avlsham	128	267	103	240	-19%		-10%	105	259	0	268	-100%		3%	115	209	67 15	7 -41%	-52	-25%	82	179	0 204	-100%	25	14%
	lunction			610		592		27	6%		622	-	500		122	20%		592	54	2	41	70/		555	451		104	10%
	Junction			019		202		-37	-0%		023		500		-125	-20%		565		2	-41	-770		555	401		-104	-19%
	A to B		90)	84		-7%	-7		98		121		23%	33		66		63	-6%			48		81	69%		
	A to C	E Aylsham	12	102	12	96	-4%		-6%	14	112	24	145	71%	00	29%	18	85	29 91	56%	7	8%	25	73	20 101	-20%	28	38%
Junction 8 -	B to A		81		81		0%			85		107		26%			70		58	-17%			74		83	12%		
Aylsham Road /	D to /		450	007	445	100	2000	-41	470/	400	0.47	140	222	2070	-24	4.00/	120	200	125 10		45	70/	140	220	100 100	22/6	07	470/
Station Road	BIOC	vv Ayısnam	156	237	115	196	-26%		-17%	162	247	116	223	-28%		-10%	139	209	135 19	3 -2%	-15	-1%	146	220	100 183	-32%	-37	-17%
Priority Junction	C to B		177	' I	157		-12%	17		163		109		-33%	52		144		95	-34%			130		60	-54%		
	C to A	S Station	39	216	42	199	8%	-17	-8%	41	204	43	152	5%	-52	-25%	70	214	50 14	-29%	-69	-32%	58	188	100 160	72%	-28	-15%
	lunction			555		401		6F	1.20/		562		520		42	00/		507	42		70	150/		101	444		27	90/
	JUNCTION			555		491		-05	-12%		505		520		-43	-0%		507	42	9	-70	-15%		401	444	_	-37	-0%
	A to B		3		3		0%	0		3		9		200%	-1		2		2	0%			2		2	0%		
	A to C	E Skeyton	46	49	46	49	0%	Ŭ	0%	48	51	41	50	-15%		-2%	44	46	44 46	0%	0	0%	48	50	49 51	2%	1	2%
Junction 9 - Station	B to A		5		5		2%			5		5		0%			3		6	115%			3		3	0%		
Road / Skeyton	Dion	N. Otation	400	107	400	400	050/	-40	0.49/	474	470	405	440	040(-36	000/	454	457	450 40	11070		50/	470	470	447 400	0.40/	50	040/
New Road Priority	BIOC	IN Station	162	167	122	128	-25%		-24%	171	176	135	140	-21%		-20%	154	157	158 16	4 3%	1	5%	170	173	117 120	-31%	-53	-31%
Junction	C to B		214		197		-8%	16		202		144		-29%	60		212		143	-32%			186		160	-14%		
	C to A	S Station	10	224	10	208	3%	-10	-7%	13	215	11	155	-15%	-00	-28%	14	225	11 15	4 -20%	-71	-32%	18	204	17 177	-6%	-27	-13%
	lunction			440		384		-56	-13%		442		345		-07	-22%		128	36	1	-64	-15%		427	3/8		-79	-10%
	Junction			440		304		-30	-1370		442		343		-31	-22 /0		420		•	-04	-1376		427	0+0		-13	-1370
	A to D		1		1		0%			1		1		0%			0		0	0%			0	ļ	0	0%		
	A to C		0)	0		0%	0		0		0		0%	0		0		0	0%			0		0	0%		
	A to B	N Oak	2	3	2	3	0%		0%	2	3	2	3	0%		0%	8	8	8 8	0%	0	0%	8	8	8 8	0%	0	0%
	D to D		407		100	Ű	470/		070	470	Ű	402	- v	00/		070	450		450	40/		070	450	Ű	140	C0/		
	BIOD		167	-	138		-17%			1/8		163	I	-8%			152	ŀ	108	4%	-		100		149	-0%		
Junction 10 -	B to C		42		31		-26%	-40		43		12		-72%	-46		43		41	-5%			57		13	-77%		
Station Road / Oak	B to A	W Station	0	208	0	169	0%		-19%	0	221	0	175	0%		-21%	3	198	3 20	2 0%	4	2%	3	218	3 165	0%	-53	-24%
Road / Skevton	C to D		20		29		0%			30		22	-	.27%			20		22	1.20/			22	-	33	50%		
Road Crossroade			28	-	20		0%			30		22	-	-2170	F 4		20	-	22	12%			22	ŀ		50%		
lunotice	C to B		64		65	ļ	1%	1		64		18		-72%	-54		32	L	33	4%			33	ļ	75	127%		
Junction	C to A	S Skeyton	0	92	0	93	0%		1%	0	94	0	40	0%		-57%	0	52	0 56	0%	4	7%	0	55	0 108	0%	53	96%
	D to C		37		36		-3%			43		32		-26%			41		41	0%			38		73	92%		
	DtoD		457		140		440/	17		454		405		440/	20		405	H	112	2004			400	ŀ	05	420/		
	DIOB		157		140		-11%	-17		151		135		-11%	-20		160		113	-39%			163		95	-42%		
	D to A	E Station	13	207	14	191	11%		-8%	19	213	18	185	-5%		-13%	4	230	4 15	9 0%	-72	-31%	4	205	4 172	0%	-33	-16%
	Junction			511		455		-56	-11%		531		403		-128	-24%		488	42	5	-64	-13%		486	453		-33	-7%
	A to D		25		20		170/			25		22		00/	-		10		19	20/	-		20		20	0%		
	AIUD		20	'	20		-17 /0			25		23	I	-0 /0			10		10	-2 /0	-		20		20	0 /6		
	A to C		143		130		-9%	-29		155		146		-6%	-25		132		150	14%			136		137	1%		
	A to B		15		13		-15%	25		15		15		0%	20		12		12	-2%			13		20	54%		
	A to A	N Station	12	195	3	166	-76%		-15%	15	210	1	185	-03%		-12%	10	172	1 18	-89%	a	5%	10	179	3 180	-70%	1	1%
	R to R	N Otation	12	100	5	100	1070		1070	13	210	1	105	0070		12.70	10	172	1 10	0070	<u> </u>	570	10	175	0 100	1070		170
	B to D		0	1	0		0%			0		0		0%			2		2	0%			2	_	2	0%		
	B to C		21		21		0%	0		23		23		0%	11		2		2	0%			2		2	0%		
lunction 11	B to A		64		64		0%	0		65		76		17%			10		10	-1%			10		10	0%		
Junction 11 -	D to R	W/ Morris		05	01	05	01/0		00/	00	00			,c		4.00/				00/		00/		4.4		00%	0	00/
Station Road /	BIOB	VV IVIOITIS	U	65	0	60	0%		0%	0	88	0	99	0%		13%	0	14	0 14	0%	0	0%	0	14	0 14	0%	0	0%
Millfield Road /	C to D		0)	0		0%			0		0		0%			0		0	0%			0		0	0%		
Morris Road Mini-	C to B		g	1	13		42%	10		13		12		-8%	15		4		4	3%			5	ſ	5	0%		
roundabout			122		120		0%	-19		126		102		25%	-45		169	ŀ	109	26%			1/1	ł	111	210/		
	CIUA		1.32		120		-970			130		102		-23%			100		100	-30%			141		111	-21/0		
	C to C	S Millfield	11	152	0	133	-100%		-12%	10	159	0	114	-100%		-28%	3	175	0 11	-100%	-62	-36%	4	150	0 116	-100%	-34	-23%
	D to C		0)	0		0%			0		0		0%			0		0	0%			0		0	0%		
	D to B		0		0		0%			0		0		0%			0		0	0%			0	ľ	0	0%		
							01/0	4		0		40		00/	12		40	H	40	70/			40	ŀ	40	4.00/		
	DIOA		U	'	4		0%			0		12		0%			43		40	-1%			43		48	12%		
	D to D	E Station	0	0	0	4	0%		0%	0	0	0	12	0%		#DIV/0!	0	43	0 40	0%	-3	-7%	0	43	0 48	0%	5	12%
	Junction			432		388		-44	-10%		457		410		-47	-10%		403	34	7	-57	-14%		386	358		-28	-7%
	A to B		73		78		7%			02		81		-12%			56		54	_20/			80		113	/1%		
	ALOD		13		70		7 70	28		32		01		-12/0	20				04	-370			00		113	4170		
Junction 12 -	A to C	N Norwich	311	384	334	412	7%		7%	356	448	387	468	9%		4%	417	472	429 48	3 3%	11	2%	443	523	516 629	16%	106	20%
B1150 Norwich	B to A		86	i	73		-16%	24		92		119		29%	25		39		45	15%			55		74	35%		
Road / Millfield	B to C	W Millfield	124	210	103	176	-17%	.04	-16%	130	222	78	197	-40%	-23	-11%	71	109	78 12	3 10%	13	12%	63	118	43 117	-32%	-1	-1%
Road Priority	C to B		104		79		-25%			02		60		-35%			1/1		83	-/10/			102		32	-60%		
Junction		0.1	104	100	10		-2076	13	004	32		00	400	-33 /6	41	004	141		00	-41%			102		101	-03%		1701
54.101.011	C to A	S Norwich	332	436	371	449	12%		3%	356	448	429	489	21%		9%	396	537	395 47	3 0%	-59	-11%	457	559	431 463	-6%	-96	-17%
	Junction			1029		1037		8	1%		1118		1154		36	3%		1119	108	3	-35	-3%		1200	1209		9	1%
	A to B		25		29		18%			25		32		28%			42		41	-3%			47		45	-4%		
	A to C	N Norwich	303	408	/12	442	Q0/	33	8%	447	472	466	498	10/	26	6%	460	511	481 50	2 20/	11	2%	516	563	626 671	21%	108	10%
Junction 13 -	A lo C	NINOIWICII	505		413	44 2	0 /0		0 /0	44/	712	400	400	4 /0		0 /0	409	511	401 52	2%		2 /0	510	505	020 0/1	21/0	100	13 /0
B1150 Norwich	B to A		71		67	ļ	-5%	-4		74		63		-15%	-10		43	L	41	-5%			49	ļ	48	-2%		
Road / Station	B to C	W Station	0	71	0	67	0%		-5%	0	74	1	64	0%		-14%	4	47	3 44	-11%	-2	-5%	4	53	4 52	0%	-1	-2%
Road Priority	C to B		2		2		10%			1		5		400%			10		9	-15%			12		13	8%		
Junction	C to A	S Monuich	410	410	425	127	69/	25	60/	450	452	546	551	210/	98	220/	447	107	126 42		•	20/	E02	514	101 507	29/	.7	10/
	CIUA	3 NOTWICH	410	412	435	43/	0%		0%	452	400	546	100	21%		2270	417	421	420 43	2%	0	270	502	014	494 507	-2%	-1	-170
	Junction			891		946		55	6%		999		1113		114	11%		985	100	1	16	2%		1130	1230		100	9%
	A to D		66	i	64		-3%			76		77		1%			60		60	0%			65		67	3%		
	A to C		210		212		-20/	-11		269		270	ł	10/	10		222	ŀ	224	10/			257	ŀ	317	220/		
	AIUC		219		213		-3%			200		270		170	10		223	, I	224	1%			207	, I	317	23%		
	A to B	E Norwich	152	437	150	427	-1%		-2%	182	526	189	536	4%		2%	118	401	117 40	J -1%	-1	0%	141	463	147 531	4%	68	15%
	B to D		143		151		5%			153		165		8%			279		279	0%			272		288	6%		
have at the	B to C		160		197		23%	49		168		172		2%	27		222	ŀ	240	20/			238	ŀ	241	1%		
Junction 14 -	D:00	NI 4 4 12	100	4.4.1	137		2570	10		100	1=0	112		2 /0		004	200	H	240	3/0		001	200		70	170	60	
B1150 Norwich	B to A	N A149	121	424	125	4/3	3%		11%	129	450	140	4//	9%		6%	63	5/5	59 57	-7%	2	0%	60	5/0	70 599	17%	29	5%
Road / A149 /	C to D		50	1	50		0%			56		108		93%			52		53	3%			60		94	57%		
Norwich Road	C to B		154		181		18%	23		184		170		-8%	73		148	F	171	15%			204		167	-18%		
Signalised Junction	CtoA	W/ Nonvieh	070	477	2000	FOO	.073		E0/	2000	FOO	205	602	100/		1.40/	050	150	240 40	50/	44	20/	200	550	200 544		11	20/
	CIOA	vv inorwich	2/3	4//	269	500	-2%		3%	290	530	325	003	12%		14%	253	403	240 46	-5%	11	2%	288	JJ2	280 541	-3%	-11	-2%
	D to C		29	1	32		10%			36		51		42%			55		59	6%			65		114	75%		
	D to B		179		181		1%	5		184		207		13%	48		228		231	1%			230		244	6%		
	D to A	S 41/9	126	335	126	340	0%		1%	125	345	135	303	Q0/		14%	05	378	04 20	3 _10/	5	1%	95	300	100 /58	5%	68	17%
	DIOA	0 1143	120	10-1	120	4700	076	~~	170	123	JJ	155	000	0 /0	150	1470	90	4000	34 30	-170		170	90	4075	100 400	570	454	00/
	Junction			16/4		1739		66	4%		1851		2009		158	9%		1808	182	э	1/	1%		19/5	2129		154	8%

	A to B		61		63		5%			64		63		-2%			51		50		-1%			78		87		12%		
	A to C		22		24		8%	5		22		32		45%	9		20		20		0%			20		33		65%		(
	A to A	N King's	0	82	0	87	0%		6%	0	86	0	95	0%		10%	0	71	0	70	0%	0	0%	0	98	0	120	0%	22	22%
Junction 15 -	B to A		196		193		-1%			203		199		-2%			166		172		3%			183		155		-15%		
Road / King's Arms	B to C		310		314		1%	0		323		384		19%	55		240		220		-9%			257		293		14%		
Street Mini-	B to B	W Grammar	15	521	14	521	-7%		0%	19	545	17	600	-11%		10%	4	411	1	392	-75%	-18	-4%	5	445	3	451	-40%	6	1%
roundabout	C to B		364		352		-3%			445		460		3%			351		351		0%			382		441		15%		
	C to A		127		123		-4%	-17		156		181		16%	40		155		160		3%			181		185		2%		
	C to C	E Grammar	0	492	0	475	0%		-3%	0	601	0	641	0%		7%	0	506	0	511	0%	5	1%	0	563	0	626	0%	63	11%
	Junction			1095		1083		-12	-1%		1232		1336		104	8%		987		973		-14	-1%		1106		1197		91	8%
	A to B		145		148		2%	1		160		183		14%	34		93		90		-3%			99		106		7%		
	A to C	S B1145	203	348	201	349	-1%		0%	216	376	227	410	5%	54	9%	306	399	292	383	-4%	-16	-4%	336	435	358	464	7%	29	7%
Junction 22 -	B to A		77		77		0%	0		83		89		7%	6		165		166		1%			165		187		13%		
Loke Priority	B to C	W Laundry	0	77	0	77	0%	Ŭ	0%	0	83	0	89	0%	0	7%	8	173	8	174	-1%	1	1%	8	173	8	195	0%	22	13%
Junction	C to B		12		12		0%	1		12		12		0%	27		6		5		-16%			5		5		0%		
	C to A	N B1145	370	382	371	383	0%	'	0%	380	392	407	419	7%	21	7%	378	384	378	383	0%	-1	0%	384	389	400	405	4%	16	4%
	Junction			808		809		2	0%		851		918		67	8%		956		940		-16	-2%		997		1064		67	7%
	A to D		17		17		0%			19		18		-5%			4		4		0%			4		4		0%		
	A to C		184		184		0%	0		195		207		6%	14		120		121		0%			124		132		6%		
	A to B	N B1145	49	250	49	250	0%		0%	50	264	53	278	6%		5%	39	164	39	164	0%	0	0%	41	169	40	176	-2%	7	4%
	B to D		52		52		0%			54		53		-2%			15		15		1%			16		16		0%		
Junction 23 -	B to C		179		180		0%	0		181		194		7%	10		155		155		0%			158		163		3%		
B1145 / Lyngate	B to A	E Lyngate	48	280	48	280	-1%		0%	50	285	48	295	-4%		4%	70	240	70	240	0%	1	0%	73	247	72	251	-1%	4	2%
Road / Folgate	C to D		26		26		-1%			27		26		-4%			15		14		-10%			16		18		13%		
Road Staggered	C to B		56		56		0%	-17		59		60		2%	-17		150		146		-3%			163		172		6%		
Crossroads	C to A	S B1145	120	202	119	201	-1%		-1%	131	217	142	228	8%		5%	148	313	140	299	-6%	-17	-4%	161	340	175	365	9%	-17	7%
	D to C		19		19		0%			19		19		0%			109		107		-2%			110		109		-1%		
	D to B		21		21		1%	0		21		21		0%	0		67		67		0%			68		68		0%		
	D to A	W Folgate	13	53	13	53	-1%		0%	13	53	13	53	0%		0%	21	197	21	195	0%	-2	-1%	21	199	21	198	0%	-1	-1%
	Junction			785		784		-1	0%		819		854		35	4%		913		898		-15	-2%		955		990		35	4%

											% Impact	Assessment	it (with Mi	tigation)													
								AM Pe	ak Hour											PM Pea	ak Hour						
					2029						2036						2029							2036			
			DM		DS				DM		DS				DM	D	S	1			D	М	D	S			
			Total	Vehicles			% increase	2	Tơ	al Vehicles		%	% increase	e	Total V	/ehicles			% increase)		Total V	ehicles		q	% increase	
		r	Turn Arm	Turn	Arm	Turn		Arm	Turn Arm	Turn	Arm	Turn		Arm	Turn Arm	Turn	Arm	Turn		Arm	Turn	Arm	Turn	Arm	Turn		Arm
	A to C		0	(0	0%			0	13	5	0%			15	2		-86%			3		21		600%		
	A to B		2	2	2	3%	0		1	8	5	700%	53		4	4		-1%			4		16		300%		
	A to D	N Bradfield	0 2	(2	0%		3%	0 1	33	54	0%		5300%	0 19	0	6	0%	-13	-67%	0	7	32	69	0%	62	886%
	B to A		2	2	2	-5%			3	19)	533%			4	4		0%			5		13		160%		
Junction 1 -	B to C		354	354	4	0%	4		372	293	5	-21%	63		558	564		1%			571		476		-17%		
Bradfield Road /	B to D	W Cromer	0 356	4	4 360	0%		1%	0 37	126	438	0%		17%	0 562	8	576	0%	14	2%	0	576	197	686	0%	110	19%
Cromer Road	C to B		480	478	3	0%			507	375	5	-26%			448	428		-5%			475		348		-27%		
Priority Junction /	C to A		0	3	3	0%	8		0	32	2	0%	1		0	0		0%			0		15		0%		
Proposed Road	C to D	E Cromer	0 480	7	7 488	0%		2%	0 50	101	508	0%		0%	0 448	27	454	0%	6	1%	0	475	99	462	0%	-13	-3%
	D to A		0	(0	0%			0	45	5	0%			0	0		0%			0		20		0%		
	D to B		0	7	7	0%	46		0	225	5	0%	343		0	4		0%			0		185		0%		
	D to C	Link Road	0 0	39	9 46	0%		-	0 0	73	343	0%		-	0 0	18	22	0%	22	-	0	0	86	291	0%	291	-
	Junction		838		897		59	7%	88		1343		460	52%	1029		1058		29	3%		1058		1508		450	43%
	A to B		78	69	9	-12%	/13		83	C)	-100%	٥		93	102		10%			87		0		-100%		
	A to C	W Cromer	277 355	329	398	19%		12%	288 37	380	380	32%	5	2%	481 574	490	593	2%	19	3%	494	581	580	580	17%	-1	0%
Junction 2 - Cromer	B to A		132	110)	-17%	14		105	C)	-100%	120		123	84		-32%			90		0		-100%		
Road / Greens	B to C	S Greens	30 161	37	7 147	27%	-14	-9%	34 13	C	0	-100%	-139	-100%	60 183	66	150	10%	-33	-18%	54	144	0	0	-100%	-144	-100%
Junction	C to B		69	70)	1%	24		66	C)	-100%	40		81	80		-1%			80		0		-100%		
	C to A	E Cromer	350 419	383	3 453	10%	34	8%	402 468	508	508	26%	40	9%	325 406	378	458	16%	52	13%	380	460	466	466	23%	6	1%
	Junction		935		997		63	7%	97		888		-90	-9%	1163		1200		38	3%		1185		1046		-139	-12%
	A to D		29	29	9	1%			29	30)	3%			54	54		0%			55		53		-4%		
	A to C		250	250	0	0%	2		263	264	L .	0%	32		298	296		0%			300		324		8%		
	A to B	N B1145	168 447	170) 449	1%		0%	171 463	201	495	18%		7%	191 543	193	543	1%	0	0%	194	549	209	586	8%	37	7%
	B to D		55	62	2	13%			54	53	5	-2%			137	152		11%			145		143		-1%		
Junction 3 - B1145	B to C		174	223	3	28%	58		176	210)	19%	55		263	268		2%			264		276		5%		
/ A149 / A149	B to A	W Cromer	95 324	97	7 382	2%		18%	103 333	125	388	21%		17%	141 542	148	568	5%	27	5%	154	563	181	600	18%	37	7%
Cromer Road /	C to D		0	()	0%			0	0)	0%			23	20		-13%			30		29		-3%		
Cromer Road	C to B		235	265	5	13%	29		283	285	5	1%	15		213	264		24%			266		252		-5%		
Signalised Junction	C to A	S A149	250 485	249	514	0%		6%	271 554	284	569	5%		3%	258 494	233	517	-9%	24	5%	279	575	283	564	1%	-11	-2%
	D to C		2	2	2	15%			2	2	2	0%			9	9		1%			9		9		0%		
	D to B		6	6	6	0%	0		6	6	5	0%	0		9	9		2%			9		9		0%		
	D to A	E Cromer	3 11	3	3 11	2%		3%	3 11	3	11	0%		0%	0 18	0	18	0%	0	1%	0	18	0	18	0%	0	0%
	Junction		1267		1356		89	7%	136	1	1463		102	7%	1597		1647		51	3%		1705		1768		63	4%
	A to D		140	140)	0%			148	148		0%			149	149		0%			148		148		0%		
	A to C		0	(0	0%	0		0	C)	0%	0		0	0		0%			0		0		0%		
	A to B	N Mundesley	0 140	(140	0%		0%	0 14	C	148	0%		0%	0 149	0	149	0%	0	0%	0	148	0	148	0%	0	0%
	B to D		31	34	1	11%			32	32	2	0%			97	101		4%			98		99		1%		
Junction 4 - Cromer	B to C		0	(D	0%	8		0	C)	0%	-3		0	0		0%			0		0		0%		
Road / Mundesley	B to A	W Cromer	44 74	48	83	11%		11%	43 75	40	72	-7%		-4%	71 168	82	183	16%	15	9%	74	172	73	172	-1%	0	0%
Road / Market	C to D		126	124	1	-2%			134	127	·	-5%			133	123		-7%			138		140		1%		
Road Signalised	C to B		0	(D	0%	-1		0	C)	0%	19		0	0		0%			0		0		0%		
Junction	C to A	S Aylsham	249 375	250	374	0%		0%	258 392	284	411	10%		5%	265 398	251	374	-5%	-24	-6%	282	420	295	435	5%	15	4%
	D to C		0	(D	0%			0	C)	0%			0	0		0%			0		0		0%		
	D to B		0	(D	0%	0		0	C)	0%	0		0	0		0%			0		0		0%		
	D to A	E Market	0 0	(0 0	0%		0%	0 0	C	0	0%		0%	0 0	0	0	0%	0	0%	0	0	0	0	0%	0	0%
	Junction		590		596		7	1%	61		631		16	3%	715		705		-9	-1%		740		755		15	2%
	A to B		0	()	0%	0		0	C)	0%	0		0	0		0%			0		0		0%		
	A to C	E Aylsham	0 0	(0 0	0%	0	0%	0 0	C	0	0%	0	0%	0 0	0	0	0%	0	0%	0	0	0	0	0%	0	0%
Junction 5 -	B to A		141	144	1	2%	0		146	172	2	18%	00		115	100		-13%			115		147		28%		
Aylsham Road /	B to C	W Aylsham	0 141	(144	0%	3	2%	0 14	C	172	0%	26	18%	0 115	0	100	0%	-15	-13%	0	115	0	147	0%	32	28%
	C to B		150	143	3	-5%	10		168	208	5	24%			127	146		15%			133		138		4%		
Junction	C to A	S Park	235 385	230	373	-2%	-12	-3%	247 41	237	445	-4%	30	7%	284 411	275	422	-3%	10	3%	306	439	288	426	-6%	-13	-3%
	Junction		526		517		-9	-2%	56		617		56	10%	526		522		-4	-1%		554		573		19	3%
	A to B		110	104	1	-6%			123	160)	30%	10		93	107		15%			98		105		7%		
	A to C	E Aylsham	39 149	38	3 142	-3%	-8	-5%	44 16	47	207	7%	40	24%	34 127	39	146	14%	19	15%	37	135	33	138	-11%	3	2%
Junction 6 -	B to A		132	136	6	3%			137	162	2	18%			99	84		-15%			97		130		34%		
Aylsham Road /	B to C	W Aylsham	2 135	2	2 138	-2%	4	3%	2 13	3	165	50%	26	19%	11 110	7	91	-39%	-19	-17%	10	107	13	143	30%	36	34%
Skeyton New Road	C to B		3	3	3	2%			3	3	5	0%			5	5		-1%			5		5		0%		
Filonity Junction	C to A	S Skevton	10 13	10	13	-1%	0	-1%	10 13	10	13	0%	0	0%	16 21	16	21	0%	0	0%	17	22	17	22	0%	0	0%
	Junction		297		293		-4	-1%	31		385		66	21%	258		258		0	0%		264		303		39	15%
	A to D		73	52	2	-28%			77	0		-100%			86	82		-5%			82		0		-100%		
	A to C		25	32	2	26%	-9		24	0)	-100%	-150		23	32		38%			20		0		-100%		
	A to B	N Greens	50 148	55	5 139	10%		-6%	49 15	0	0	-100%		-100%	65 174	69	183	6%	8	5%	65	167	0	0	-100%	-167	-100%
	B to D		131	114	1	-13%		0,0	137	194	, Ť	42%			103	98		-5%	~	0,13	115		201	v	75%		
Junction 7 - B1145	BtoC		0	10)	0%	0		0	134		0%	23		5	5	1	3%			6		6		0%		
Ayisham Road /	B to A	W Avlsham	31 162	27	7 161	22%		0%	34 17	0	194	-100%		13%	46 154	50	161	26%	7	5%	41	162	0	207	-100%	45	28%
Greens Road /	CtoD	tt rigionalit	34	20	9	-14%		070	34	34		0%		1070	19	14		-27%		070	21	102	36	201	71%	13	2070
Tungate Road	C to B		4	23	1	-1%	0		4			0%	-5		4	4	1	-6%			4		4		0%		
Crossroads	C to A	S Tungate	5 43	10	43	96%		0%	5 43	0	38	-100%		-12%	23 46	23	41	4%	-5	-10%	22	47	0	40	-100%	-7	-15%
lunction		June				5070								1			1 ···	.,0					5		. 5575		

JUNCTION	Dia		40		10		24.0/			40		20		0470/			40	1	40	440/			40		24	0.40/		
	DIOC		13	<u>,</u>	10		-21%			12		38		217%			13	ŀ	12	-11%			16	-	31	94%		
	D to B		126	6	126		0%	-28		142		230		62%	9		81		78	-4%			81		173	114%		
	D to A	E Avlsham	128	267	103	240	-19%		-10%	105	259	0	268	-100%		3%	115	209	67 15	7 -41%	-52	-25%	82	179	0 204	-100%	25	14%
	lunction			610		592		27	6%		622	-	500		122	20%		592	54	2	41	70/		555	451		104	10%
	Junction			019		202		-37	-0%		023		500		-125	-20%		565		2	-41	-770		555	401		-104	-19%
	A to B		90)	84		-7%	-7		98		121		23%	33		66		63	-6%			48		81	69%		
	A to C	E Aylsham	12	102	12	96	-4%		-6%	14	112	24	145	71%	00	29%	18	85	29 91	56%	7	8%	25	73	20 101	-20%	28	38%
Junction 8 -	B to A		81		81		0%			85		107		26%			70		58	-17%			74		83	12%		
Aylsham Road /	D to /		450	007	445	100	2000	-41	470/	400	0.47	140	222	2070	-24	4.00/	120	200	125 10		45	70/	140	220	100 100	22/0	07	470/
Station Road	BIOC	vv Ayısnam	156	237	115	196	-26%		-17%	162	247	116	223	-28%		-10%	139	209	135 19	3 -2%	-15	-1%	146	220	100 183	-32%	-37	-17%
Priority Junction	C to B		177	' I	157		-12%	17		163		109		-33%	52		144		95	-34%			130		60	-54%		
	C to A	S Station	39	216	42	199	8%	-17	-8%	41	204	43	152	5%	-52	-25%	70	214	50 14	-29%	-69	-32%	58	188	100 160	72%	-28	-15%
	lunction			555		401		6F	1.20/		562		520		42	00/		507	42		70	150/		101	444		27	90/
	JUNCTION			555		491		-05	-12%		505		520		-43	-0%		507	42	9	-70	-15%		401	444	_	-37	-0%
	A to B		3		3		0%	0		3		9		200%	-1		2		2	0%			2		2	0%		
	A to C	E Skeyton	46	49	46	49	0%	Ŭ	0%	48	51	41	50	-15%		-2%	44	46	44 46	0%	0	0%	48	50	49 51	2%	1	2%
Junction 9 - Station	B to A		5		5		2%			5		5		0%			3		6	115%			3		3	0%		
Road / Skeyton	Dion	N. Otation	400	107	400	400	050/	-40	0.49/	474	470	405	440	040(-36	000/	454	457	450 40	11070		50/	470	470	447 400	0.40/	50	040/
New Road Priority	BIOC	IN Station	162	167	122	128	-25%		-24%	171	176	135	140	-21%		-20%	154	157	158 16	4 3%	1	5%	170	173	117 120	-31%	-53	-31%
Junction	C to B		214		197		-8%	16		202		144		-29%	60		212		143	-32%			186		160	-14%		
	C to A	S Station	10	224	10	208	3%	-10	-7%	13	215	11	155	-15%	-00	-28%	14	225	11 15	4 -20%	-71	-32%	18	204	17 177	-6%	-27	-13%
	lunction			440		384		-56	-13%		442		345		-07	-22%		128	36	1	-64	-15%		427	3/8		-79	-10%
	Junction			440		304		-30	-1370		442		343		-31	-22 /0		420		•	-04	-1376		427	0+0		-13	-1370
	A to D		1		1		0%			1		1		0%			0		0	0%			0	ļ	0	0%		
	A to C		0)	0		0%	0		0		0		0%	0		0		0	0%			0		0	0%		
	A to B	N Oak	2	3	2	3	0%		0%	2	3	2	3	0%		0%	8	8	8 8	0%	0	0%	8	8	8 8	0%	0	0%
	D to D		407		100	Ű	470/		070	470	Ű	402	- v	00/		070	450		450	40/		070	450	Ű	140	C0/		
	BIOD		167	-	138		-17%			1/8		163	I	-8%			152	ŀ	108	4%	-		100		149	-0%		
Junction 10 -	B to C		42		31		-26%	-40		43		12		-72%	-46		43		41	-5%			57		13	-77%		
Station Road / Oak	B to A	W Station	0	208	0	169	0%		-19%	0	221	0	175	0%		-21%	3	198	3 20	2 0%	4	2%	3	218	3 165	0%	-53	-24%
Road / Skevton	C to D		20		29		0%			30		22	-	.27%			20		22	1.20/			22	-	33	50%		
Road Crossroade			28	-	20		0%			30		22	ŀ	-2170	F 4		20	-	22	12%			22	ŀ		50%		
lunotice	C to B		64		65	ļ	1%	1		64		18		-72%	-54		32	L	33	4%			33	ļ	75	127%		
Junction	C to A	S Skeyton	0	92	0	93	0%		1%	0	94	0	40	0%		-57%	0	52	0 56	0%	4	7%	0	55	0 108	0%	53	96%
	D to C		37		36		-3%			43		32		-26%			41		41	0%			38		73	92%		
	DtoD		457		140		440/	17		454		405		440/	20		405	H	112	200/			400	ŀ	05	420/		
	DIOB		157		140		-11%	-17		151		135		-11%	-20		160		113	-39%			163		95	-42%		
	D to A	E Station	13	207	14	191	11%		-8%	19	213	18	185	-5%		-13%	4	230	4 15	9 0%	-72	-31%	4	205	4 172	0%	-33	-16%
	Junction			511		455		-56	-11%		531		403		-128	-24%		488	42	5	-64	-13%		486	453		-33	-7%
	A to D		25		20		170/			25		22		00/	-		10		19	20/	-		20		20	0%		
	AIUD		20	'	20		-17 /0			25		23	I	-0 /0			10		10	-2 /0	-		20		20	0 /6		
	A to C		143		130		-9%	-29		155		146		-6%	-25		132		150	14%			136		137	1%		
	A to B		15		13		-15%	25		15		15		0%	20		12		12	-2%			13		20	54%		
	A to A	N Station	12	195	3	166	-76%		-15%	15	210	1	185	-03%		-12%	10	172	1 18	-89%	a	5%	10	179	3 180	-70%	1	1%
	R to R	N Otation	12	100	5	100	1070		1070	13	210	1	105	0070		12.70	10	172	1 10	0070	<u> </u>	570	10	175	0 100	1070		170
	B to D		0	1	0		0%			0		0		0%			2		2	0%			2	_	2	0%		
	B to C		21		21		0%	0		23		23		0%	11		2		2	0%			2		2	0%		
lunction 11	B to A		64		64		0%	0		65		76		17%			10		10	-1%			10		10	0%		
Junction 11 -	D to R	W/ Morris		05	01	05	01/0		00/	00	00			,c		4.00/				00/		00/		4.4		01/0	0	00/
Station Road /	BIOB	VV IVIOITIS	U	65	0	60	0%		0%	0	88	0	99	0%		13%	0	14	0 14	0%	0	0%	0	14	0 14	0%	0	0%
Millfield Road /	C to D		0)	0		0%			0		0		0%			0		0	0%			0		0	0%		
Morris Road Mini-	C to B		g	1	13		42%	10		13		12		-8%	15		4		4	3%			5	ſ	5	0%		
roundabout			122		120		0%	-19		126		102		25%	-45		169	ŀ	109	26%			1/1	ł	111	210/		
	CIUA		1.32		120		-970			130		102		-23%			100		100	-30%			141		111	-21/0		
	C to C	S Millfield	11	152	0	133	-100%		-12%	10	159	0	114	-100%		-28%	3	175	0 11	-100%	-62	-36%	4	150	0 116	-100%	-34	-23%
	D to C		0)	0		0%			0		0		0%			0		0	0%			0		0	0%		
	D to B		0		0		0%			0		0		0%			0		0	0%			0	ľ	0	0%		
							01/0	4		0		40	-	00/	12		40	H	40	70/			40	ŀ	40	4.00/		
	DIOA		U	'	4		0%			0		12		0%			43		40	-1%			43		48	12%		
	D to D	E Station	0	0	0	4	0%		0%	0	0	0	12	0%		#DIV/0!	0	43	0 40	0%	-3	-7%	0	43	0 48	0%	5	12%
	Junction			432		388		-44	-10%		457		410		-47	-10%		403	34	7	-57	-14%		386	358		-28	-7%
	A to B		73		78		7%			02		81		-12%			56		54	_20/			80		113	/1%		
	ALOD		13		70		7 70	28		32		01		-12/0	20				04	-370			00		113	4170		
Junction 12 -	A to C	N Norwich	311	384	334	412	7%		7%	356	448	387	468	9%		4%	417	472	429 48	3 3%	11	2%	443	523	516 629	16%	106	20%
B1150 Norwich	B to A		86	i	73		-16%	24		92		119		29%	25		39		45	15%			55		74	35%		
Road / Millfield	B to C	W Millfield	124	210	103	176	-17%	.04	-16%	130	222	78	197	-40%	-25	-11%	71	109	78 12	3 10%	13	12%	63	118	43 117	-32%	-1	-1%
Road Priority	C to B		104		79		-25%			02		60		-35%			1/1		83	-/10/			102		32	-60%		
Junction		0.1	104	100	10		-2076	13	004	32		00	400	-33 /6	41	004	141		00	-41%			102		101	-03%		1701
54.101.011	C to A	S Norwich	332	436	371	449	12%		3%	356	448	429	489	21%		9%	396	537	395 47	3 0%	-59	-11%	457	559	431 463	-6%	-96	-17%
	Junction			1029		1037		8	1%		1118		1154		36	3%		1119	108	3	-35	-3%		1200	1209		9	1%
	A to B		25		29		18%			25		32		28%			42		41	-3%			47		45	-4%		
	A to C	N Norwich	303	408	/12	442	Q0/	33	8%	447	472	466	498	10/	26	6%	460	511	481 50	2 20/	11	2%	516	563	626 671	21%	108	10%
Junction 13 -	A loc	NINOIWICII	505		413	44 2	0 /0		0 /0	44/	712	400	400	4 /0		0 /0	409	511	401 52	2%		2 /0	510	505	020 0/1	21/0	100	13 /0
B1150 Norwich	B to A		71		67	ļ	-5%	-4		74		63		-15%	-10		43	L	41	-5%			49	ļ	48	-2%		
Road / Station	B to C	W Station	0	71	0	67	0%		-5%	0	74	1	64	0%		-14%	4	47	3 44	-11%	-2	-5%	4	53	4 52	0%	-1	-2%
Road Priority	C to B		2		2		10%			1		5		400%			10		9	-15%			12		13	8%		
Junction	C to A	S Monuich	410	410	425	127	69/	25	60/	450	452	546	551	210/	98	220/		107	126 42		•	20/	E02	514	101 507	29/	.7	10/
	CIUA	3 NOTWICH	410	412	435	43/	0%		0%	452	400	546	100	21%		2270	417	421	420 43	2%	0	270	502	014	494 507	-2%	-1	-170
	Junction			891		946		55	6%		999		1113		114	11%		985	100	1	16	2%		1130	1230		100	9%
	A to D		66	i	64		-3%			76		77		1%			60		60	0%			65		67	3%		
	A to C		210		212		-20/	-11		269		270	ł	10/	10		222	ŀ	224	10/			257	ŀ	317	220/		
	AIUC		219		213		-3%			200		270		170	10		223	, I	224	1%			207	, I	317	23%		
	A to B	E Norwich	152	437	150	427	-1%		-2%	182	526	189	536	4%		2%	118	401	117 40	J -1%	-1	0%	141	463	147 531	4%	68	15%
	B to D		143		151		5%			153		165		8%			279		279	0%			272		288	6%		
have at the	B to C		160		197		23%	49		168		172		2%	27		222	ŀ	240	20/			238	ŀ	241	1%		
Junction 14 -	D:00	NI 4 4 12	100	4.4.1	137		2070	10		100	1=0	112		2 /0		004	200	H	240	3/0		001	200		70	170	60	
B1150 Norwich	B to A	N A149	121	424	125	4/3	3%		11%	129	450	140	4//	9%		6%	63	5/5	59 57	-7%	2	0%	60	5/0	70 599	17%	29	5%
Road / A149 /	C to D		50	1	50		0%			56		108		93%			52		53	3%			60		94	57%		
Norwich Road	C to B		154		181		18%	23		184		170		-8%	73		148	F	171	15%			204		167	-18%		
Signalised Junction	CtoA	W/ Nonvieh	070	477	2000	FOO	.073		E0/	2000	FOO	205	602	100/		1.40/	050	150	240 40	50/	44	20/	200	550	200 544		11	20/
	CIOA	vv inorwich	2/3	4//	269	500	-2%		3%	290	530	325	003	12%		14%	253	403	240 46	-5%	11	2%	288	JJ2	280 541	-3%	-11	-2%
	D to C		29	1	32		10%			36		51		42%			55		59	6%			65		114	75%		
	D to B		179		181		1%	5		184		207		13%	48		228		231	1%			230		244	6%		
	D to A	S 41/0	126	335	126	340	0%		1%	125	345	135	303	Q0/		14%	05	378	04 20	3 _10/	5	1%	95	300	100 /58	5%	68	17%
	DIOA	0 1143	120	10-1	120	4700	076	~~	170	123	JJ	155	000	0 /0	150	1470	90	4000	34 30	-170		170	90	4075	100 400	570	454	00/
	Junction			16/4		1739		66	4%		1851		2009		158	9%		1808	182	э	1/	1%		19/5	2129		154	8%

	A to B		61		63		5%			64		63		-2%			51		50		-1%			78		87		12%		
	A to C		22		24		8%	5		22		32		45%	9		20		20		0%			20		33		65%		
	A to A	N King's	0	82	0	87	0%		6%	0	86	0	95	0%		10%	0	71	0	70	0%	0	0%	0	98	0	120	0%	22	22%
Junction 15 -	B to A		196		193		-1%			203		199		-2%			166		172		3%			183		155		-15%		
Road / King's Arms	B to C		310		314		1%	0		323		384		19%	55		240		220		-9%			257		293		14%		
Street Mini-	B to B	W Grammar	15	521	14	521	-7%		0%	19	545	17	600	-11%		10%	4	411	1	392	-75%	-18	-4%	5	445	3	451	-40%	6	1%
roundabout	C to B		364		352		-3%			445		460		3%			351		351		0%			382		441		15%		
	C to A		127		123		-4%	-17		156		181		16%	40		155		160		3%			181		185		2%		
	C to C	E Grammar	0	492	0	475	0%		-3%	0	601	0	641	0%		7%	0	506	0	511	0%	5	1%	0	563	0	626	0%	63	11%
	Junction			1095		1083		-12	-1%		1232		1336		104	8%		987		973		-14	-1%		1106		1197		91	8%
	A to B		145		148		2%	1		160		183		14%	34		93		90		-3%			99		106		7%		
	A to C	S B1145	203	348	201	349	-1%		0%	216	376	227	410	5%	54	9%	306	399	292	383	-4%	-16	-4%	336	435	358	464	7%	29	7%
Junction 22 -	B to A		77		77		0%	0		83		89		7%	6		165		166		1%			165		187		13%		
Loke Priority	B to C	W Laundry	0	77	0	77	0%	Ŭ	0%	0	83	0	89	0%	0	7%	8	173	8	174	-1%	1	1%	8	173	8	195	0%	22	13%
Junction	C to B		12		12		0%	1		12		12		0%	27		6		5		-16%			5		5		0%		
	C to A	N B1145	370	382	371	383	0%	'	0%	380	392	407	419	7%	21	7%	378	384	378	383	0%	-1	0%	384	389	400	405	4%	16	4%
	Junction			808		809		2	0%		851		918		67	8%		956		940		-16	-2%		997		1064		67	7%
	A to D		17		17		0%			19		18		-5%			4		4		0%			4		4		0%		
	A to C		184		184		0%	0		195		207		6%	14		120		121		0%			124		132		6%		
	A to B	N B1145	49	250	49	250	0%		0%	50	264	53	278	6%		5%	39	164	39	164	0%	0	0%	41	169	40	176	-2%	7	4%
	B to D		52		52		0%			54		53		-2%			15		15		1%			16		16		0%		
Junction 23 -	B to C		179		180		0%	0		181		194		7%	10		155		155		0%			158		163		3%		
B1145 / Lyngate	B to A	E Lyngate	48	280	48	280	-1%		0%	50	285	48	295	-4%		4%	70	240	70	240	0%	1	0%	73	247	72	251	-1%	4	2%
Road / Folgate	C to D		26		26		-1%			27		26		-4%			15		14		-10%			16		18		13%		
Road Staggered	C to B		56		56		0%	-17		59		60		2%	-17		150		146		-3%			163		172		6%		
Crossroads	C to A	S B1145	120	202	119	201	-1%		-1%	131	217	142	228	8%		5%	148	313	140	299	-6%	-17	-4%	161	340	175	365	9%	-17	7%
	D to C		19		19		0%			19		19		0%			109		107		-2%			110		109		-1%		
	D to B		21		21		1%	0		21		21		0%	0		67		67		0%			68		68		0%		
	D to A	W Folgate	13	53	13	53	-1%		0%	13	53	13	53	0%		0%	21	197	21	195	0%	-2	-1%	21	199	21	198	0%	-1	-1%
	Junction			785		784		-1	0%		819		854		35	4%		913		898		-15	-2%		955		990		35	4%

													% Impact Ass	sessment														
								AM Pe	ak Hour												PM Pe	ak Hour						
					2029							2036						20	29						2036			
			DM	D	S	-			D	М	D	S	-			DN	N	DS				DI	М	D	s	1		
			Total	Vehicles		%	% increase		<u> </u>	Total V	/ehicles		%	increase			Total V	ehicles		% increas	e		Total V	Vehicles		%	increase	
	A to D	1	Turn Arm	Turn	Arm	Turn		Arm	Turn	Arm	Turn	Arm	Turn		Arm	Turn /	Arm	Turn Arm	Turn	/	Arm	Turn	Arm	Turn	Arm	Turn	A	.rm
	A to D		105	105		0%			107		111		4%			146		146	05	6 /		153		158		3%		
	A to B	E Nonwich	7	7		0%			7		039		1/1%			10		10	-49	6		04		030		0%		
	A to A		0 751	0	783	0%	32	4%	4	778	0	958	-100%	180	23%	0	704	0 70	8 09	6 4	1%	4	730	0	797	-100%	67	9%
	B to D		0	0	100	0%	02	470	0	110	0	000	0%	100	2070	3	704	3	-29	6	170	2	100	3	101	50%	01	070
	B to C		10	11		1%			12		12		0%			11		10	-29	6		12		11		-8%		
lunction 1 -	B to A	S Millfield	10	10		-1%			9		10		11%			7		7	39	6		8		8		0%		
Rectory Road /	B to B		0 21	0	21	0%	0	0%	0	21	0	22	0%	1	5%	0	20	0 2	0 09	6 0	0%	0	22	0	22	0%	0	0%
B1150 Norwich	C to D		86	85		-1%			84		87		4%			99		100	19	6		100		103		3%		
Road / Mill Road	C to B		7	8		6%			7		7		0%			2		2	-29	6		2		2		0%		
Mini-Roundabout	C to A	W Norwich	571	578		1%			602		659		9%			639		670	59	6		672		802		19%		
	C to C		0 664	0	670	0%	6	1%	0	693	0	753	0%	60	9%	0	740	0 77	1 09	6 31	4%	0	774	0	907	0%	133	17%
	D to C		108	108		0%			108		109		1%			80		80	09	6		84		82		-2%		
	D to B		3	3		5%			4		4		0%			1		1	159	6		0		0		0%		
	D to A	N Rectory	150	151		1%	0	404	154		152	005	-1%		00/	127		126	0	6	00/	129	040	131	040	2%		001
	D to D		0 261	0	263	0%	2 40	1%	0	266	0	265	0%	-1	0%	0	208	0 20	8 0	<u>6</u> 0	0%	0	213	0	213	0%	0	1.0%
			511	543	1/30	6%	40	2%	524	1/50	714	1990	36%	240	14%	422	10/3	426	10	3	D 2%	110	1739	512	1929	14%	200	12%
	A to C		0	040		0%			0		0		0%					0	09	6		0		0		0%		
	A to B	N High	54	54		0%			57		62		9%			42		40	-49	6		37		43		16%		
	A to A		0 565	0	597	0%	33	6%	0	581	0	776	0%	195	34%	0	463	0 46	6 09	6 3	1%	0	486	0	555	0%	69	14%
	B to D		234	234		0%			237		233		-2%			273		273	09	6		273		275		1%		
	B to C		0	0		0%			0		0		0%			0		0	09	6		0		0		0%		
Junction 2 - B1150	B to A	E B1354	37	37		1%			35		37		6%			43		44	19	6		46		45		-2%		
Norwich Road / B1354 Church	B to B		0 271	0	271	0%	0	0%	0	272	0	270	0%	-2	-1%	0	316	0 31	7 09	6 1	0%	0	319	0	320	0%	1	0%
Street / High Street	C to D		0	0		0%			0		0		0%			0		0	09	6		0		0		0%		
/ Petrol Station	C to B		0	0		0%			0		0		0%			0		0	09	6		0		0		0%		
Gyratory	C to A	S Petrol	0	0		0%			0		0		0%			0		0	09	6		0		0		0%		
	C to C		0 0	0	0	0%	0	0%	0	0	0	0	0%	0	0%	0	0	0 0	0	6 0 /	0%	0	0	0	0	0%	0	0%
	DtoC		240	250		0%			260		260		0%			264		262	19	0		271		274		0%		
		W Norwich	401	407		2%			407		470		15%			/08		527	-1	6		519		675		30%		
	D to D		0 750	0	758	0%	8	1%	0	775	0	830	0%	55	7%	0	762	0 78	9 09	6 27	4%	010	790	0.0	949	0%	159	20%
	Junction		1586		1626		41	3%	-	1628	-	1876		248	15%		1541	15	72	3	1 2%	-	1595	-	1824		229	14%
	A to B		553	587		6%			574		764		33%			437		441	19	6		456		527		16%		
	A to C	E Station	1 554	1	588	-4%	34	6%	2	576	2	766	0%	190	33%	1	438	1 44	2 09	6 4	1%	0	456	0	527	0%	71	16%
Junction 3 - High Street / Station	B to A		422	428		1%			421		487		16%			522		552	60	6		544		704		29%		
Road Priority	B to C	S High	15 437	16	444	2%	6	1%	15	436	16	503	7%	67	15%	18	540	18 57	0 -39	6 30	6%	17	561	16	720	-6%	159	28%
Junction	C to B		9	8		-1%			9		9		0%			27		27	09	6		27		27		0%		
	C to A	N High	2 11	2	10	-3%	0	-1%	1	10	1	10	0%	0	0%	8	36	9 3	6 19	6 0	0%	10	37	10	37	0%	0	0%
			1002	24	1043	00/	40	4%	20	1022	20	12/9	70/	257	25%	20	1014	10	+0	34	+ 3%	25	1054	25	1284	00/	230	22%
	A to C		0	34		0%			30		32		0%			20		20	-19	6		25		25		0%		
	A to B	N Rectory	24 57	24	57	0%	0	0%	25	55	25	57	0%	2	4%	17	45	18 4	5 19	6 0	0%	20	45	18	43	-10%	-2	-4%
	B to D		236	235		0%	-		241		238		-1%			289		288	09	6		289		304		5%		
Junction 4 - Church	B to C		2	2		0%			4		4		0%			0		0	09	6		0		0		0%		
Loke / B1354 /	B to A	E B1354	50 288	51	288	1%	0	0%	49	294	50	292	2%	-2	-1%	26	314	26 31	4 19	6 0	0%	23	312	25	329	9%	17	5%
Rectory Road	C to D		4	4		1%			2		3		50%			2		2	09	6		2		3		50%		
Crossroads	C to B		4	4		0%			4		4		0%			2		2	39	6		4		4		0%		
Junction	C to A	S Church	0 8	0	8	0%	0	1%	0	6	0	7	0%	1	17%	0	4	0 4	09	60	1%	0	6	0	7	0%	1	17%
	D to C		10	10		3%			13		13		0%			1		1	-179	6		1		1		0%		
	D to B	14/ B - 05 - 1	333	332		0%			343	100	340		-1%			267		264	-19	6		268	0.0	282	000	5%		-
	D to A	W B1354	62 404	61	404	-1%	-1	0%	64	420	63	416	-2%	-4	-1%	36	304	36 30	∠ 0°	• -3	-1%	36	305	37	320	3%	15	5%
Link 5 D1150		A - to West	742	770	100	5%	-1	0%	750	115	049	112	25%	-3	0%	605	800	600	U 40	-	0%	720	800	795	099	0%	31	5%
Norwich Road at	Bto A	B - to Fast	751 1494	756	1533	1%	39	3%	739	1543	837	1785	7%	242	16%	762	1457	790 14	39 49	6 32	2%	800	1520	947	1732	18%	212	14%
bridge	Junction		1494	750	1533	170	39	3%	704	1543	007	1785	1 /0	242	16%	102	1457	14	39	3	2 2%	000	1520	541	1732	1070	212	14%
	A to B	A - to North	438	444		1%		570	438		504		15%			540		569	59	6	1,0	564		720		28%		
Link 6 - High Street	B to A	B - to South	563 1001	597	1041	6%	40	4%	579	1017	775	1279	34%	262	26%	463	1003	467 10	37 19	6 33	3%	487	1051	558	1278	15%	227	22%
	Junction		1001		1041		40	4%		1017		1279		262	26%		1003	10	37	33	3 3%		1051		1278		227	22%

													% Impact As	sessment	(with Mitig	ation)												
									AM Pe	ak Hour											PM Pe	ak Hour						
						2029				-		2036	-					2029	1						2036			
			DI	M Total \	U D	5		/ increase			M Total \	US (shisles		/ increase		DM	otal Vahialas	JS	-	% increase		D		/ohiolog	5	o/ :	ineresco	
			Turn	Arm	Turn	Arm	Turn /	o merease	Arm	Turn	Arm	Turn Arm	Turn	/o increase	Arm	Turn Arm	Turn	Arm	Turn	/o merease	Arm	Turn	Arm	Turn	Arm	Turn	Arm	
	A to D		105	~im	105	<u> </u>	0%		Am	107		111	4%		7.im	146	146	S S	0%		Am	153		158		3%		
	A to C		639		670		5%			660		839	27%			548	553	3	1%			564		630		12%		
	A to B	E Norwich	7		7		0%			7		8	14%			10	10)	-4%			9		9		0%		
	A to A		0	751	0	783	0%	32	4%	4	778	0 958	-100%	180	23%	0 70	04 0	708	0%	4	1%	4	730	0	797	-100%	67 9) %
	B to D		0		0		0%			0		0	0%			3	3	3	-2%			2		3		50%		
	B to C	S Millfield	10		11		1%			12		12	0%			11	10	7	-2%			12		11		-8%		
Junction 1 -	B to B	3 Millineiu	0	21	0	21	-1%	0	0%	9	21	0 22	0%	1	5%	0 2	0 0	20	0%	0	0%	0	22	0	22	0%	0 0	0%
B1150 Norwich	C to D		86		85		-1%		070	84		87	4%		0,0	99	100		1%		0,0	100		103		3%		
Road / Mill Road	C to B		7		8		6%			7		7	0%			2	2	2	-2%			2		2		0%		
Mini-Roundabout	C to A	W Norwich	571		578		1%			602		659	9%			639	670)	5%			672		800		19%		
	C to C		0	664	0	670	0%	6	1%	0	693	0 753	0%	60	9%	0 74	40 0	771	0%	31	4%	0	774	0	905	0%	131 17	7%
	D to C		108		108		0%			108		109	1%			80	80)	0%			84		82		-2%		
	D to B	NDestand	3		3		5%			4		4	0%			1	1		15%			0		0		0%		
	D to D	IN RECION	150	261	0	263	0%	2	1%	154	266	0 265	-1%	-1	0%	0 20	120	208	0%	0	0%	129	213	0	213	0%	0 0	2%
	Junction		Ŭ	1696		1736	070	40	2%		1758	1998	070	. 240	14%	16	73	1708	070	35	2%	Ű	1739	Ŭ	1937		198 11	1%
	A to D		511		543		6%			524		716	37%			422	426	6	1%			449		510		14%		
	A to C		0		0		0%			0		0	0%			0	C)	0%			0		0		0%		
	A to B	N High	54		54		0%			57		62	9%			42	40)	-4%			37		43		16%		
	A to A		0	565	0	597	0%	33	6%	0	581	0 778	0%	197	34%	0 46	63 0	466	0%	3	1%	0	486	0	553	0%	67 14	4%
	B to D		234		234		0%			237		233	-2%			2/3	2/3	5	0%			2/3		275		1%		
Junction 2 - B1150	B to A	F B1354	37		37		1%			35		37	6%			43	44	1	1%			46		45		-2%		
Norwich Road /	B to B	2 21001	0	271	0	271	0%	0	0%	0	272	0 270	0%	-2	-1%	0 31	16 0	317	0%	1	0%	0	319	0	320	0%	1 0)%
B1354 Church Street / High Street	C to D		0		0		0%			0		0	0%			0	C)	0%			0		0		0%		
/ Petrol Station	C to B		0		0		0%			0		0	0%			0	C)	0%			0		0		0%		
Gyratory	C to A	S Petrol	0		0		0%			0		0	0%			0	C)	0%			0		0		0%		
	C to C		0	0	0	0	0%	0	0%	0	0	0 0	0%	0	0%	0 0		0	0%	0	0%	0	0	0	0	0%	0 0)%
	DIDC		349		350		0%			368		360	-2%			264	262		-1%			271		274		1%		
	D to D	W Norwich	401		407		2%			407		472	16%			498	527	7	6%			519		674		30%		
	D to D		0	750	0	758	0%	8	1%	0	775	0 832	0%	57	7%	0 76	62 0	789	0%	27	4%	0	790	0	948	0%	158 20	.0%
	Junction			1586		1626		41	3%		1628	1880		252	15%	15	41	1572		31	2%		1595		1821		226 14	4%
	A to B		553		587		6%			574		764	33%			437	441		1%			456		527		16%		
Junction 3 - High	A to C	E Station	1	554	1	588	-4%	34	6%	2	576	2 766	0%	190	33%	1 43	38 1	442	0%	4	1%	0	456	0	527	0%	71 16	6%
Street / Station	B to A	S High	422	137	428	111	1%	6	1%	421	136	488	7%	68	16%	522 18 5/	10 19	570	۵% 3%	30	6%	544	561	16	720	29%	150 21	8%
Road Priority	C to B	Orlight	9	457	8		-1%	0	170	9	400	9	0%	00	1070	27	27	7 570	0%	50	070	27	501	27	720	0%	100 20	570
Junction	C to A	N High	2	11	2	10	-3%	0	-1%	1	10	1 10	0%	0	0%	8 3	6 9	36	1%	0	0%	10	37	10	37	0%	0 0)%
	Junction			1002		1043		40	4%		1022	1280		258	25%	10	14	1048		34	3%		1054		1284		230 22	.2%
	A to D		34		34		0%			30		32	7%			28	28	3	-1%			25		25		0%		
	A to C		0		0		0%			0		0	0%	0	404	0	0	2	0%	<u>^</u>	00/	0	45	0	10	0%		10/
	A to B	N Rectory	24	57	24	57	0%	0	0%	25	55	25 57	-1%	2	4%	1/ 4	5 18	45	1%	0	0%	20	45	18	43	-10%	-2 -4	1%
Junction 4 Church	B to C		230		233		0%			4		4	-1%			0	200		0%			209		0		0%		
Loke / B1354 /	B to A	E B1354	50	288	51	288	1%	0	0%	49	294	50 292	2%	-2	-1%	26 31	14 26	314	1%	0	0%	23	312	25	329	9%	17 5	5%
Rectory Road	C to D		4		4		1%			2		3	50%			2	2	2	0%			2		3		50%		
Crossroads	C to B		4		4		0%			4		4	0%			2	2	2	3%			4		4		0%		
JUNCTION	C to A	S Church	0	8	0	8	0%	0	1%	0	6	0 7	0%	1	17%	0 4	1 0	4	0%	0	1%	0	6	0	7	0%	1 17	7%
	D to C		10		10		3%			13		13	0%			1	1		-17%			1		1		0%		
	D to A	W B1354	333	404	332	404	-1%	-1	0%	543	420	63 418	-2%	-2	0%	20/	264	302	-1%	-3	-1%	208	305	282	320	5%	15 5	5%
	Junction	11 01004	02	758	01	758	170	-1	0%	04	775	774	-2 /0	-1	0%	66	68	665	078	-3	0%	50	668	51	699	570	31 5	5%
Link 5 - B1150	A to B	A - to West	743		778		5%			759	-	949	25%			695	699)	1%			720		785		9%		
Norwich Road, at	B to A	B - to East	751	1494	756	1533	1%	39	3%	784	1543	841 1790	7%	247	16%	762 14	57 790	1489	4%	32	2%	800	1520	948	1733	19%	213 14	4%
bridge	Junction			1494		1533		39	3%		1543	1790		247	16%	14	57	1489		32	2%		1520		1733		213 14	4%
Link 6 - High Street	A to B	A - to North	438	1004	444	1044	1%	40	40/	438	1017	505	15%	262	26%	540	569	1027	5%	22	20/	564	1051	721	1070	28%	220	20/
Link o - High Street	BIOA	B - to South	563	1001	597	1041	6%	40	4%	579	1017	1280	34%	203	26%	463 10	03 467	1037	1%	33	3%	487	1051	558	1279	15%	228 22	2%
	JUNCTION			1001		1041		-+0	470		1017	1200		203	2070	10	~~	1037	1		570		1001		1213		220 22	- 70

Appendix C – Flow Diagrams

0	Market S	treet	_		
	King's Arm	is Street			
)	63 ↓	24 L	Grammar School Roa	d	
Nor	t ↓ ■ wich Road	123 352			
	150 ↓	213 ↓	64 L		
	t_ ↓ ↓	126 181 32			
	29 ل	413 ↓			
E	31150 Norw 78 ل	vich Road 334 ↓			
)	6 ᢏ 1	433 ↓			
			No	tes	
		Che	cked	Date	Figure
		Т	Ĵ	13/10/2023	9
-					

9	Market S	treet			
			-		
	King's Arm	s Street			
)	50 ↓	20 L	Grammar School Road	d	
Nor	↓ ↓ wich Road	160 351	umai scriour Koal	-	
	117 لے	224 ↓	60 L		
	Ľ ↓	94 231 59			
	41 ل	481 ↓			
E	54	429			
)	18 J	487 ↓			
В	1150 Norw	ich Road	No	tes	
		Cher	cked	Date	Figure
		<u>т</u>	J	13/10/2023	11
_					<u> </u>

3		
Market Street		
King's Arms Street		
63 32 ↓ L		
Grammar School Road	d	
189 270 77 ↓ ↓ _{A149}		
$ \begin{array}{ccc} & 135 \\ & 207 \\ & 51 \end{array} $		
32 466 ↓ ↓		
81150 Norwich Road 81 387 ↓ ↓		
36 431 ↓ ↓		
No	tes	
	Def	F ¹ a
TJ	Date 13/10/2023	Figure 17
ļ		

3	Market S	treet	_		
	King's Arm	s Street			
)	87 ↓	33 L			
Nor	↓ ↓ wich Road	185 441	Grammar School Roa	d	
	147 ب	317 ↓	67 L _{A149}		
	t_ E	100 244			
	↓ 45	626			
	Ļ	ţ			
E	1150 Norv	fich Road			
	Ļ	ţ			
	0-	10-			
)	97 ل	466 ↓			
В	1150 Norw	ich Road	No	tes	
		Cheo	cked	Date	Figure
		Т	J	13/10/2023	19
_					ļ

1						
Market Street						
King's Arms Street						
64 32						
Grammar School Roa	d					
151 320 77 ↓ ↓ ↓ _{А149}						
t_ 135 ← 210 ↓ 49						
32 522 ↓ ↓						
B1150 Norwich Road 114 410 ↓ ↓						
37 436 ↓ ↓						
B1150 Norwich Road						
NOTES						
Checked	Date	Figure				
IJ	13/10/2023	21				

3	Market S	treat						
	Warket 5	ueet	-					
	King's Arm	33						
0	↓ ↓ ↓ rwich Road	L 174 451	Grammar School Roa	d				
	145 ب	330 ↓	67 L _{A149}					
	Ľ ↓	100 248 110						
	45 ل	634 ↓						
	125 J	512 ↓						
)	91 ل	475 ↓						
B	B1150 Norwich Road							
NOIES								
Checked		cked	Date	Figure				
TJ		J	13/10/2023	23				
	I			Į				

Appendix D – Local Model Validation Reports

North Walsham Vissim Model Validation Report

ESCO Developments, Flagship Housing Group and Lovell Partnership

13 April 2023

Delivering a better world

Quality Information

Prepared by	Checked by	Verified by	Approved by	
Michael Fowler	Javier Navarro Pardo	Phil Arnold	Bevin Carey	
Graduate Consultant	Principal Consultant	Associate Director	Regional Director	

Revision History

Revision	Revision date	Details	Authorized	Name	Position
0.1	17 February 2023	First Draft		Javier Navarro Pardo	Principal Consultant
0.2	13 March 2023	Second Draft		Phil Arnold	Associate Director
1.0	13 April 2023	Draft Issue for Client Comment		Bevin Carey	Regional Director

Distribution List

Hard Copies PDF Required Association / Company Name

Prepared for:

ESCO Developments, Flagship Housing Group and Lovell Partnership

Prepared by: Michael Fowler

AECOM Limited Marlborough Court 10 Bricket Road St Albans AL1 3JX United Kingdom

T: +44(0)1727 535000 aecom.com

© 2023 AECOM Limited. All Rights Reserved.

This document has been prepared by AECOM Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Contents

1. Introduction	.1
Background and Report Structure	. 1
Model Scope	. 1
2. Data Collection and Analysis	.3
	. 3
Automatic Number Plate Recognition (ANPR) data	.3
Manually Classified Turning Count (MCTC) data	. 5
Automatic Traffic Count (ATC) data	. 5
Camera Footage	. 6
3. Data Review and Analysis	.7
Consistency Review	. 7
Peak Hour Analysis	. 7
4. Demand Development	.9
Overview	. 9
Demand Development	. 9
Convergence and routing analysis	11
5. Network Development1	3
Network coding	13
Desired Speed Decisions & Reduced Speed Areas	13
Route Closures	13
Priority Rules and Conflict Areas	14
Buses	15
Signal Information	15
Differences between AM and PM Networks	15
6. Model Calibration1	6
Introduction	16
Saturation Flow Calibration	16
Flow Calibration Criteria	16
Flow Calibration Results	17
Calibration Parameters	19
7. Model Validation2	21
Introduction	21
Journey Time Validation Results	21
JT1	23
JT2	25
JT4	26
Queue Comparison	28
Model Variability	30
8. Conclusion	33
Appendix A – Consistency Checks	34
Appendix B - Calibration Results	36

Appendix C – Flow Diagram	.38
Appendix D – Journey Time Validation Results	.41
Journey Time Route 1	. 41
Journey Time Route 2	. 43
Journey Time Route 3	. 46
Journey Time Route 4	. 48
Journey Time Route 5	. 51
Journey Time Route 6	. 53
Journey Time Route 7	. 56
Journey Time Route 8	. 58
Journey Time Route 9	. 61
Appendix E – Journey Time Variability	.64

1. Introduction

Background and Report Structure

- 1.1 ESCO Developments, Flagship Housing Group and Lovell Partnerships have commissioned AECOM to develop a Vissim base model of the town of North Walsham to assess the impacts of increased demand in forecast years and the proposed North Walsham Western Urban Extension (NWWUE). The model has been calibrated and validated to replicate the operation of the town based on data collected in July and November 2022.
- 1.2 This report documents the data collection and analysis, the development of the network and base year demand, and the calibration/ validation. The report is structured as follows:
 - Data collection and analysis;
 - Demand development;
 - Modelled Network;
 - Calibration results;
 - Validation results; and
 - Conclusions.

Model Scope

1.3 The Vissim model has been developed for the area shown in Figure 1-1. The North Walsham network comprises three signalized junctions and numerous priority-controlled junctions. The Vissim model area includes the A149, which runs through the town with the signalized junctions with the B1150 and B1145.

Figure 1-1 – Modelled Area

- 1.4 Figure 1-2 below shows the key junctions/ links identified from the survey data/ observations in the model area that are significant to local network operation. The key junctions/ links are as follows:
 - 1 Cromer Road and Bradfield Road;
 - 2 Cromer Road and Greens Road;
 - 3 Cromer Road, A149 and B1145;
 - 4 Cromer Road, Aylsham Road, Mundesley Road and Market Street;

- 5 Aylsham Road underpass;
- 6 B1150 Norwich Road and A149 North Walsham Bypass; and
- 7- B1150 and Millfield Road.
- 1.5 These junctions/ links have been considered when developing the model to replicate the existing operation and driving behaviour observed in the video footage available. It should be noted that the operation at some of these locations is dependent on variable factors such as on-street parking, physical constraints, and courtesy/ give way behaviours, which have been modelled and calibrated to observed queuing patterns/levels of delay.

- 1.6 The Vissim Base models have been developed for the AM and PM peak hours, including 30 minutes warmup and 15 minutes cool-down periods, to make sure the network is saturated at the beginning of the peak hour and to allow vehicles to complete their journeys after the peak hour.
- 1.7 The Base models have been developed in line with modelling requirements and the calibration and validation criteria defined in Transport Analysis Guidance (TAG) and the Guidelines for the Use of Microsimulation Software published in May 2022 by National Highways.

2. Data Collection and Analysis

Introduction

- 2.1 The data collection exercise undertaken by AECOM to inform the Vissim Base model development has been summarised in this section. The data collection comprised the following survey types:
 - Automatic Number Plate Recognition (ANPR) data;
 - Manual Classified Turning Counts (MCTC) Data; and
 - Automatic Traffic Counts (ATC) data.
- 2.2 The data collection took place between the 12th and 14th July. However, upon review, road works were identified on the 12th of July, which resulted in non-standard delays and routing on this day. The data from the 12th of July was therefore not used.
- 2.3 Further analysis into the survey data, especially on ANPR sample rates showed that there was a noticeably lower capture rate on the 14th of July compared to the 13th of July across several cameras including key sites such as Site 11 northbound on the B1150.
- 2.4 An example of the sample rate analysis which was undertaken of the ANPR data can be found in Figure 3.1 for the AM and PM peak hours. The graphs in Figure 3.1 show a large flow difference between the vehicle numbers captured by the ANPR and the total flows along the road on the 14th of July 2022, while the data on the 13th of July show a close match between the two data sets.

Figure 2-1 – ANPR performance 13th/14th July

2.5 As a result of the initial survey data analysis undertaken it was decided that only the data collected on the 13th of July 2022 will be used to support the VISSIM model development. The ANPR data obtained on the 14th was used to as further verify that origin-destination patterns on the 13th of July were typical.

Automatic Number Plate Recognition (ANPR) data

- 2.6 The ANPR data collection was categorized into two groups of cameras, Figure 2-2 shows the camera locations.
- 2.7 The **cordon cameras** were defined to capture the origin/destination demand across the area and total journey time through the model area.
 - The **internal cameras** were defined to capture the internal routing within the model area and split the journey times into sections.

- 2.9 As shown in Figure 2-2 some of the ANPR cameras lie outside the modelled area. Whilst these cameras were not used as journey origins or destinations, the routing information obtained from them was also used to inform the routing within the model.
- 2.10 In addition to the routing and journey time information, the ANPR surveys also included Manual Classified Counts (MCCs) associated with each camera to record the capture rate and classify ANPR data.

Figure 2-2 – ANPR Cameras

- 2.11 It should be noted that the ANPR data and routing information is based on the number plates captured successfully during the surveys. Table 2-1 summarizes the captured rate (number of plates that were successfully recognised by the ANPR camera).
- 2.12 The capture and matched rates in Table 2-1 show that most cameras had a very high sample/ match rate, providing a high degree of confidence that the data reflects the demand and routing patterns within the study area.

0.44	Sample Rate				
Site	Overall	Inbound	Outbound		
1	99%	100%	99%		
2	99%	99%	99%		
3	98%	98%	98%		
4	98%	99%	97%		
5	99%	99%	99%		
6	99%	99%	98%		
7	94%	94%	94%		
8	98%	98%	97%		
9	86%	88%	84%		
10	99%	99%	99%		
11	98%	98%	98%		
12	94%	90%	98%		

Table 2-1 – ANPR Cameras Capture and Match Rate

Prepared for:

Site	Sample Rate			
	Overall	Inbound	Outbound	
13	98%	99%	98%	
14	99%	-	99%	
15	98%	98%	96%	
16	97%	98%	97%	
17	98%	99%	97%	
18	98%	98%	99%	
Total	98%	99%	97%	

* For internal cameras inbound refers to Eastbound or Northbound movement and outbound refers to Westbound or Southbound.

Manually Classified Turning Count (MCTC) data

- 2.13 MCTCs were carried out at the sites indicated in Figure 2-3 on the 12th,13th, and 14th July 2022, between 07:00 and 19:00. The MCTC data was used to refine the base model demand and calibrate the turning flows at each junction shown in Figure 2-3.
- 2.14 Additional MCTC surveys were undertaken on 10th of November 2022 to compare the traffic flow changes from the July 2022 data.

Figure 2-3 – Manual Classified Turning Counts sites

Automatic Traffic Count (ATC) data

- 2.15 The link counts were collected using ATCs. The ATC data was collected over two weeks period including the 12th, 13th, and 14th July 2022.
- 2.16 Seventeen ATC sites were surveyed in total that have been used to inform the total trip ends at the entry/ entry points to the model. Their locations are shown in Figure 2-4.

Figure 2-4 – Link counts (Automatic Traffic Counts)

Camera Footage

2.17 Camera footage, which was recorded to produce the MCTC and ANPR data, was obtained to provide the modellers with a more detailed view of the driving behaviour in the area and allow for saturation flow measurements.

3. Data Review and Analysis

Consistency Review

- 3.1 The locations of MCTCs have been labelled approach arms and model entry points to assist with the analysis of the data consistency review and can be found in Appendix A.
- 3.2 The consistency between the different data sets was assessed to understand the reliability of the data and identify any discrepancy that could affect the model development. The key comparisons and findings found during the data analysis have been summarised below. The full details of the consistency checks undertaken can be found in Appendix A.
- 3.3 As a result of consistency checks, it was necessary to include six additional synthetic zones in the model, to balance the flow differences identified between adjacent junctions.
- 3.4 The synthetic zones identified during the survey data analysis represent minor junctions that were not surveyed during the data collection exercise. These junctions are located between surveyed junctions which were calibrated against observed counts. This is the standard modelling approach to infill volumes between surveyed junctions arising due to minor side roads, parking lots etc.
- 3.5 Additional MCTC surveys were carried out on 10th of November 2022 to compare the traffic flows against July 2022 data. The analysis showed a close match between the MCTC data of July and November 2022.

Peak Hour Analysis

- 3.6 The survey data available was processed to identify the morning and evening peak hours by analysing the profile of traffic volumes during the surveyed period. For this calculation, all vehicle movements have been considered as well as calculations of the inbound flows to the model area.
- 3.7 MCTC and ATC/ MCC data were analysed to determine the peak hour, by totalling all movements and by totalling only entries in the model area. In the AM period, the peak hour was calculated to be 08.00-09.00, both when considering entries into the modelled area and when using all available data. In the PM period calculations similarly returned a consistent peak hour of 16.30-17.30 using both methods. The ATC/MCC data was also analysed and showed the same peak hours as the analysis of the MCTC data.
- 3.8 Figure 2-4 shows the profile of the rolling hour calculated from the ATC data, which was used for calculating the peak hour.

- 3.9 This analysis has identified the following peak hours:
 - AM peak hour: 08:00 09:00; and
 - PM peak hour: 16:30 17:30
- 3.10 The modelled simulation periods include a 30-minute warm-up period to fully saturate the network before the simulated peak hour and a 15-minute cool-down period to allow vehicles to complete their journeys. The modelled periods are, therefore:
 - AM modelled period: 07:30 09:15; and
 - PM modelled period: 16:00 17:45.

Overview

- 4.1 This section describes the demand methodology and the routing analysis undertaken to develop and calibrate the traffic demand in the Vissim Base model.
- 4.2 The model was developed using the dynamic assignment module, as it would allow the model to predict future changes in routing which result from the demand growth, committed schemes or proposed mitigation measures in the area.
- 4.3 The ANPR data was used to develop the prior demand, which was then adjusted using the MCTC data to calibrate the demand to individual junction turning flows, resulting in the hourly Origin Destination (OD) matrices used in the Vissim model.
- 4.4 The traffic demand has been calculated for each vehicle type included in the model (Car, Light Goods Vehicle (LGV) and Heavy Goods Vehicle (HGV)) for the modelled peak hours. The available survey data has been used to develop the hourly Origin-destination matrices and the 15-minute profiles for each origin zone.

Demand Development

- 4.5 ANPR captures number plates at each of the camera locations providing a trip chain report documenting when and where the number plate was captured. This information has been used to develop demand matrices for the Vissim model.
- 4.6 The ANPR data has been factored up to represent all the vehicles in the network, by expanding the matched vehicles based on the capture rate at each ANPR site. However, the capture rates are not consistent between all the cameras, resulting in small discrepancies between these ANPR demand matrices and the MCTC data.
- 4.7 To minimise these discrepancies and refine the modelled demand, the ANPR matrix has been manually adjusted to match the MCTC data, allowing for a closer representation of the MCTC counts demand in the area while maintaining a direct correspondence between the VISSIM demand and the original ANPR data, preserving the observed routing data. The process followed is outlined in Figure 4-1.

Figure 4-1 – Demand Development Methodology

- 4.8 To ensure the best possible correlation between the observed data and the Vissim model demand, the vehicle inputs and origin/destination routing have been developed by combining three different components:
 - Initial Matrix reflecting the routing patterns in the ANPR matrix and the link counts at entries and exits
 of the model;
 - New Zones Matrix additional zones required in Vissim but not directly captured by the ANPR; and
 - Manual Adjustment Matrix adjustments required to address routing and discrepancies between the Initial Matrix and MCTC data.
- 4.9 The process outline below was followed:
 - The ANPR cameras and the Vissim model zones have been consistently referenced to define a correspondence between them e.g., Camera 5 is representative of Zone 5. The OD matrix extracted from the ANPR data has then been uplifted to reflect the number of vehicles at each origin, since the ANPR capture rate is less than 100%.
 - The imperfect capture rate, with different number plates missed at each camera, means that the resulting matrix requires uplifting to outbound observed flows. The entry and exit link counts were used to furness the matrix. The last iteration has been set up to match the origin trip ends, to ensure that the demand matrix represents the traffic volumes entering the model area. This process results in an hourly OD matrix for each vehicle type: Cars, HGVs, Taxis, and LGVs.
 - Once the matrix derived from ANPR and link counts was in a usable OD matrix format, the entries to the model where ANPR data is unavailable were reviewed. The total origin and destination demand for each additional zone was derived from the differences between adjacent turning counts and the trip distribution was assumed to be the same as another zone with similar characteristics. In this way, a New Zones Matrix was developed, which will infill the Initial Matrix to include zones not covered by ANPR cameras.
 - The Initial matrix and the New Zones Matrix were combined and assigned in Vissim the modelled turning flows and observed turning counts were compared to identify manual adjustments required to meet the flow calibration criteria. This was an iterative process, and several adjustments were needed before adequate match between observed and modelled turning counts was achieved.
 - The manual adjustments identified from the comparison between the modelled and observed turning flows are implemented in a separate Manual Adjustments Matrix for each vehicle class; this is then combined with the Initial Matrix and New Zones Matrix developed previously to obtain the final Vissim demand.

Convergence and routing analysis

- 4.10 The Vissim dynamic assignment module assigns the vehicles on the different paths based on the journey time cost and distance, assigning most of the vehicles to the shorter or faster paths, depending on the convergence parameters.
- 4.11 The journey time and routing data obtained from the ANPR was used to analyse the routing patterns in the model area and calculate the parameters required to support the convergence process.
- 4.12 The results of the convergence process and dynamic assignment were then checked against the routing information obtained from the ANPR data to ensure the model provides a suitable representation of the routing patterns in the area for the OD pairs with multiple route choice.
- 4.13 An example of the routing checks is shown in Figure 4-2 below, for two possible routes between Zone 1 and Zone 4 in both directions. The routing analysis compared the flows along each route against the observed data from ANPR surveys. This analysis provided further reassurance that the observed routing patterns were replicated in the model for the main OD pairs with multiple route options.
- 4.14 It should be noted that these routing checks were undertaken to identify and address any potential routing issues in the assignment that may affect the operation of the model. However, these checks are not part of the TAG validation criteria required for microsimulation models.

Figure 4-2 - VISSIM Dynamic Assignment with Two Possible Routes

5. Network Development

Network coding

- 5.1 Scaled Bing maps within Vissim have been used to code the network geometry and structure, such as number of lanes and flare lengths. Reference was also made to Google Maps and Street view to ensure the network reflects conditions on the ground.
- 5.2 Observation from the video footage available have also been used to inform the network coding and replicate the operation of the existing layout.

Desired Speed Decisions & Reduced Speed Areas

- 5.3 Desired Speed Decisions, defining the speed distribution that vehicles follow at each point of the network, have been updated to represent the posted speed limits for each link. Reduced Speed Areas have been included to replicate driving behaviours such as bends curves, narrow road sections or pedestrian crossings, but also, to calibrate saturation flows and replicate behaviour at signalised junctions.
- 5.4 The speed distributions used in the model have been obtained from two different sources. The Guidelines for the Use of Microsimulation Software from National Highways provide distributions for 50 mph and 70 mph, while 30 mph and 60 mph have been obtained from the SPE0111 Vehicle Speed Compliance by road type and vehicle type in Great Britain from Department for Transport (DfT).
- 5.5 On some links, the speed limits do not provide a realistic representation of the average speeds. For example, Bradfield Road is a country lane with the national speed limit of 60 mph, However, the average speed for a narrow unlit road is significantly lower according to the ANPR data. The speed limits coded on such links have been derived from observed ANPR data.
- 5.6 Similar behaviour has been observed in Tungate Road and Skeyton Road, where the journey time data suggests that vehicles travel at lower speeds. A 30 mph speed limit has been coded on Tungate Road since this is a single-track road, and vehicles will slow down at narrow sections or when a vehicle in the opposite direction approaches. Due to the unpredictable/ variable behaviour along these links, and fact that vehicle may need to pass each other/ stop at any point along the link, this can only be replicated by Reduced Speed Areas (RSAs) representing average delay along the link.
- 5.7 Closer to the town centre on the section of Aylsham Road between Cherry Tree Lane and Station Road the road narrows with residential property walls and fences at either side of the road. A lower speed limit (15mph) was introduced in the model to represent the observed behaviour along this section, where vehicles slow-down below the speed limit (20 mph).

Route Closures

- 5.8 The routing analysis undertaken during the convergence and assignment was also used to identify certain routes with negligible traffic flows. These routes have been removed from the model to avoid rat-running and improve the model stability.
- 5.9 The following route closures were implemented in the model to prohibit certain routes which are not practical, due to the conditions of the roads, and this was confirmed by ANPR and MCTC data:
 - A route closure has been coded on Skeyton Road, banning the through movement from the south, so the road is only used for access to and from Zone 24 (Brookes Drive). This assumption was supported by the ANPR and MCTC data in the area showing less than 15 vehicles per hour along this route in both directions;
 - Secondly, a route closure was applied to avoid vehicles accessing Cromer Road to and from Cherry Tree Lane, as the road is narrow and on-street parking makes this route highly unattractive; and,
 - A route closure was also added to Bradfield Road allowing vehicles to only use Cromer Road for Eastbound and Westbound movements.

Priority Rules and Conflict Areas

- 5.10 Priority Rules and Conflict Areas have been coded and calibrated based on observed network conditions and driving behaviour at roundabouts, priority junctions and other give way situations.
- 5.11 Priority Rules have also been used to replicate specific behaviours such as the operation of the underpass on Aylsham Road shown in Figure 5-1 where large vehicles use the centre of the road to go through the underpass due to the height of the bridge.

Figure 5-1 – Eastbound Road view on Aylsham Road at A149 underpass

- 5.12 In addition to the underpass on Aylsham Road there are height restrictions in place for HGVs at the B1150 Norwich Road and A149 Cromer Road. The traffic data collected at the nearby junctions suggests that the constraints created by the height restrictions do not affect all the HGVs as the data and the video footage shows OGV1 and OGV2 going through the underpass.
- 5.13 The Vissim model has been calibrated to match the number of Cars, LGVs and HGVs observed in the area. However, vehicle classification used to develop the Vissim demand (DfT vehicle classification) which defines the vehicle characteristics, such as vehicle length, acceleration or speed profile does not include any reference to vehicle height as this parameter is not linked to the vehicle type.

Figure 5-2 – Height restriction on N Walsham Rd

Buses

5.14 All bus services in the model were coded based on information available online. For all bus stops in the model a standard dwell time of 20 seconds was assumed.

Signal Information

- 5.15 The signalised junctions included in the model area have the capability to operate on MOVA (Microprocessor Optimised Vehicle Actuation). However, MOVA logs, and operational files were not collected on the day of the surveys, so it was not possible to model this operation explicitly in the model. This requires use of PCMOVA, an add-on to Vissim, which adds additional time/cost to the model development and increases run-times, so this is typically only used in complex strategic junctions where it is proportionate.
- 5.16 The signal data provided by Norfolk County Council (NCC), including the specification of the existing controller, and the average green times at the junction were used to develop a variable signal logic file included in the model using VisVAP. The Vehicle Actuated (VA) signal operation allows the model to extend or reduce the green time allocated to each arm of the junction depending on the traffic demand, which is monitored through detectors (representing loops in the road).
- 5.17 The minimum and maximum green times as well as signal patterns defining the priority of each arm have been calibrated to observed signal operation and signal information, to provide a realistic approximation of the operation of MOVA.

Differences between AM and PM Networks

5.18 Some elements of the models are expected to be different in different time periods. The demand, routing, and signal controllers represent the different flow patterns/ routeing and signal timings in the AM and the PM model. However, there are no differences between AM and PM networks to report.

6. Model Calibration

Introduction

6.1 The purpose of the model calibration process is to ensure that the model represents existing traffic conditions. Calibration is an iterative process in which the model is revised to replicate observed traffic volumes, traffic conditions and vehicle behaviour as closely as possible.

Saturation Flow Calibration

- 6.2 The saturation flow is the maximum number of vehicles that are able to pass across a lane at a signal stopline in an hour.
- 6.3 The modelled saturation flows on each signalized stop line have been compared to estimated saturation flows calculated using the RR67 formula. The measurements required for the RR67 formula (lane-width, radius, etc.) have been measured using Google Maps.
- 6.4 The modelled saturation flows were extracted from Vissim using a saturation flow script developed by AECOM. Modelled values have been compared to the RR67 values to ensure that they are within an acceptable range. The saturation flow results have been presented, below in Table 6-1.

Junction	Approach	Modelled	RR67	Difference
	Mundesley Road	1761.25	1865	-6%
Cromer Road / Aylsham Road	Aylsham Road	1761.25	1865	-6%
	Cromer Road	1761.25	1915	-8%
	A149 Northbound	1731.16	1808	-4%
	A149 Northbound	1818.8	1915	-5%
Cromer Road / B1150 / A149	B1150 Southbound	1979.0	1915	3%
	B1150 Southbound	1717.74	1808	-5%
	Cromer Road	1672.69	1785	-6%
	Cromer Road	1717.74	1808	-5%
	A149 Southbound	1781.58	1915	-7%
	A149 Northbound	1780.27	1915	-7%
A440 / Nerwich Deed / Oremany Cohool Deed	A149 Southbound	1723.09	1808	-5%
A1497 Norwich Road / Grammar School Road	Norwich Road	1720.85	1783	-3%
	A149 Northbound	1727.75	1808	-4%
	Norwich Road	1935.75	1859	4%

Table 6-1 - Saturation Flows

Flow Calibration Criteria

- 6.5 This section presents the traffic flow calibration which was undertaken and compares modelled and observed traffic flows using the criteria provided in TAG Unit M3-1.
- 6.6 The observed and modelled turning flows were compared for each of the junctions for the AM and PM peak hours, using the TAG criteria (Unit M3.1) for flow calibration as shown in Table 6-2.

Туре	Criteria	Acceptability Guidelines
1 - % Flows	 a. Individual flows within 15% for flows 700- 2700 vph b. Individual flows within 100 vph for flows < 700 vph C. Individual flows within 400 vph for flows > 2700 vph 	> 85% of all cases
2 – GEH Criteria	GEH Statistic - Individual flows: GEH < 5	

Table 6-2 – TAG Calibration Criteria

- 6.7 The differences between modelled and observed flows were calculated and the TAG criteria, both for absolute differences and for GEH statistic, were used to determine if these differences were acceptable. The GEH statistic incorporates both relative and the absolute differences and provides a better indication of the significance of differences, compared to using percentage differences which can be misleading.
- 6.8 The GEH statistic is defined as:

 $GEH = \sqrt{\frac{(M-C)^2}{(M+C)/2}}$, where M and C are different datasets to be compared.

Flow Calibration Results

- 6.9 The modelled turning flows were compared against the surveyed turning flows to calibrate the demand inputs and model assignment. The models were run twenty times using different random seeds to produce a set of average turning count results for comparison with the survey data.
- 6.10 The AM calibration results in Table 5-3 show the calibration results for each vehicle type. The results demonstrate that the AM peak hour flows are also calibrated closely against the observed turning counts when analysed vehicle class, and all exceed the thresholds set out in TAG. The structure of the junctions and turning count references included in the AM calibration results can be found in Appendix B.

Vehicle Class	Tag Criteria	Within	Total Counts	Percentage Passing
Cor	% Counts within GEH <5	150	151	99%
Car	% Flows within Individual Flow	151	151	100%
HGV	% Counts within GEH <5	151	151	100%
	% Flows within Individual Flow	151	151	100%
LGV	% Counts within GEH <5	151	151	100%
	% Flows within Individual Flow	151	151	100%
Total	% Counts within GEH <5	145	151	96%
	% Flows within Individual Flow	150	151	99%

Table 6-3 - AM Calibration Results - Peak Hour by Vehicle Class

- 6.11 The AM calibration results in Table 5.4 shows the calibration results for total vehicles entering the model. Although not required in TAG, explicitly matching the observed number of vehicles entering the network is a key metric to validate the capacity and delays of the microsimulation models.
- 6.12 The results demonstrate that modelled flows at all entries to the model are calibrated closely with observed data as all the inputs are below GEH 5 as required in TAG guidance.

Entry Road	Observed	Modelled	GEH
Bradfield Road Joining Cromer Road	7	2	2.36
Cromer Road Eastbound	346	344	0.11
Mundesley Road Southbound	136	135	0.09
Market Street Westbound	0	0	0.00
Tungate Road Northbound	46	42	0.60
Aylsham Road Eastbound	166	155	0.87
Skeyton Road Eastbound	92	92	0.00
Morris Road Eastbound	73	82	1.02
Norwich Road Northbound	428	419	0.44
North Walsham Bypass Northbound	325	320	0.28
Grammar School Road Westbound	555	551	0.17
Laundry Loke Eastbound	69	71	0.24
Lyngate Road North	225	241	1.05
Lyngate Road West	320	272	2.79
Folgate Road	47	48	0.15
Total	2835	2777	1.09

Table 6-4 - AM Calibration results - Model Entries

6.13 The calibration summary in Table 6-5 demonstrates that the PM peak hour model flows are also closely calibrated against the observed turning counts when analysed by vehicle class, exceeding the requirements set out in TAG. The structure of the junctions and turning counts references included in the PM calibration results can be found in Appendix B.

Table 6-5 - PM Calibration Results - Peak Hour by Vehicle Class

Vehicle Class	Tag Criteria	Within	Total Counts	Percentage Passing
Cars	% Counts within GEH <5	151	151	100%
Curo	% Flows within Individual Flow	151	151	100%
HGVs	% Counts within GEH <5	151	151	100%
	% Flows within Individual Flow	151	151	100%
LGVs	% Counts within GEH <5	150	151	99%
	% Flows within Individual Flow	151	151	100%
Total	% Counts within GEH <5	148	151	98%
	% Flows within Individual Flow	151	151	100%

6.14 The PM calibration results in Table 5.6 shows the calibration results for total vehicles entering the model. The results demonstrate that the total entry volumes into the model are calibrated closely with observed data.

Junction	Observed	Modelled	GEH
Bradfield Road Joining Cromer Road	5	7	0.82
Cromer Road Eastbound	552	542	0.43
Mundesley Road Southbound	135	143	0.68
Market Street Westbound	0	0	0.00
Tungate Road Northbound	55	46	1.27
Aylsham Road Eastbound	155	147	0.65
Skeyton Road Eastbound	58	54	0.53
Morris Road Eastbound	12	15	0.82
Norwich Road Northbound	537	521	0.70
North Walsham Bypass Northbound	376	373	0.16
Grammar School Road Westbound	530	522	0.35
Laundry Loke Eastbound	167	158	0.71
Lyngate Road Southbound	232	235	0.20
Lyngate Road Westbound	232	235	0.20
Folgate Road	184	188	0.29
Total	3169	3116	0.95

Table 6-6 - PM Calibration Results – Model Entries

6.15 A flow diagram was constructed to visualise the junctions/ network and show turning flows within the model. The flow diagrams, showing calibration of flows for all turning movements in the AM and PM, can be found in Appendix C.

Calibration Parameters

6.16 Table 6-7 summarises the main calibration and specific driving behaviour parameters recommended by TAG and DfT for microsimulation models. These parameters have been included in the North Walsham VISSIM model in line with the recommended guidance.

Table 6-7 - Microsimulation Model Parameters – TAG/DfT

Parameter	Value	Following Guidance
Headway	1s time	Yes
Gap	1 to 4 seconds, depends on location	Yes
Vehicle Dynamics	Following graphs	Yes
Reaction Time	-	-
Desired Speed Distributions	Following graphs	Yes
Driver Awareness	Following graphs	Yes
Influence of signing on the approach to a diverge of the motorway lane selection	5	Yes
	Yes, used on merging and weaving links	
Cooperative Merging	Maximum speed difference - 6.71mph	Yes
	Maximum collision time – 10s	
Implied Capacity at roundabouts and signal stop lines	-	-
Min Distance between vehicles at a standstill	1.5m	Yes

7. Model Validation

Introduction

- 7.1 Following the model calibration process, the VISSIM models were validated using journey time data. The vehicle travel time results from the models were compared against the surveyed journey time data to validate the queuing and delay in the model. The models were run twenty times using different random seeds to produce a set of average journey time results for comparison with the survey data.
- 7.2 The TAG M3-1 criteria for journey time validation are shown in Table 7-1 below.

Table 7-1 – TAG Validation Criteria

Criteria	Acceptability Guidelines
Modelled times along routes should be within 15% of surveyed times (or 1 minute, if higher than 15%)	> 85% of routes

Journey Time Validation Results

7.3 Figure 7-1 shows the nine journey time routes which have been defined within the model area. The average observed journey times were compared to the average modelled journey times in accordance with the criteria set out in TAG M3-1. The journey times routes were defined using the camera position of the ANPR surveys used to capture the observed journey time data.

Figure 7-1 – Journey Time Routes

- 7.4 The definition of these journey times routes has been carried out using the position of the ANPR cameras used to capture the observed journey time data. The inner cameras have also been used split the longer routes into sections, so the profile of delays along the routes can be replicated to make sure the main capacity constraints in the area are validated.
- 7.5 Tables 6-2 and 6-3 show the individual performance of each of the defined journey time routes for all vehicles, all of which pass the TAG criteria. For ease, the routes are identified as JT 1 to 9 in the following paragraphs.

ID	Route Name	Observed	Modelled	% Difference	Validation
1	JT1_EB	183	173	-6%	Yes
2	JT1_WB	167	174	4%	Yes
3	JT2_NB	178	186	5%	Yes
4	JT2_SB	173	168	-3%	Yes
5	JT3_EB	105	109	4%	Yes
6	JT3_WB	129	135	4%	Yes
7	JT4_EB	340	309	-9%	Yes
8	JT4_WB	258	251	-3%	Yes
9	JT5_EB	142	134	-6%	Yes
10	JT5_WB	146	142	-3%	Yes
11	JT6_NB	158	171	8%	Yes
12	JT6_SB	176	175	0%	Yes
13	JT7_NB	222	214	-4%	Yes
14	JT7_SB	94	89	-5%	Yes
15	JT8_NB	291	303	4%	Yes
16	JT8_SB	264	255	-3%	Yes
17	JT9_EB	211	194	-8%	Yes
18	JT9_WB	160	156	-2%	Yes

Table 7-2 – AM Journey Time Validation

ID	Route Name	Observed	Modelled	% Difference	Validation
1	JT1_EB	204	176	-14%	Yes
2	JT1_WB	180	180	0%	Yes
3	JT2_NB	192	198	3%	Yes
4	JT2_SB	207	206	0%	Yes
5	JT3_EB	104	104	0%	Yes
6	JT3_WB	134	130	-3%	Yes
7	JT4_EB	364	342	-6%	Yes
8	JT4_WB	267	256	-4%	Yes
9	JT5_EB	155	151	-3%	Yes
10	JT5_WB	150	149	0%	Yes
11	JT6_NB	189	186	-1%	Yes
12	JT6_SB	192	184	-4%	Yes
13	JT7_NB	274	244	-11%	Yes
14	JT7_SB	96	94	-2%	Yes
15	JT8_NB	362	349	-4%	Yes
16	JT8_SB	294	295	0%	Yes
17	JT9_EB	265	226	-14.5%	Yes
18	JT9_WB	173	160	-8%	Yes

Table 7-3 – PM Journey Time Validation

7.6 The detailed journey time comparisons through the key parts of the model have been extracted and compared against the observed data in the sections below Figure 7-2 to Figure 7-10, showing that the model provides an accurate representation of the journey time and delays along the routes. The comparison of all the journey time routes included in the model routes can be found in Appendix D.

JT1

7.7 JT1 runs from Zone 1 – Cromer Road South to Zone 3 – Skeyton Road, as shown in Figure 7-2. This route is considered important as this is the region of the proposed development. This route shows that the lower speeds included in the models is aligned with the average speed obtained from the observed journey time data.

Figure 7-2 – JT1 Route Diagram

7.8 Figure 7-3 show the eastbound validation profile of this route with the observed data for both peaks.

7.9 Figure 7-4 show the westbound validation profile of this route with the observed data for both peaks.

Figure 7-4 – JT1 Westbound Journey Time Validation profile

JT2

7.10 JT2 run from Zone 5 – North Walsham Bypass North to Zone 10 – North Walsham Bypass, as shown in Figure 5-5.

7.11 Figure 7-6 show the northbound validation profile of this route with the observed data for both peaks.

Figure 7-6 – JT2 Northbound Validation Profile

Figure 7-7 – JT2 Southbound Validation Profile

JT4

7.13 JT4 runs from Zone 2 Aylsham Road to Camera 14 Park Lane in the eastbound direction and from Zone 5 to Zone 2 in the westbound direction. This route has a different start/end point in the east as Park Lane is a one-way street.

Figure 7-8 – JT4 Route Diagram

7.14 Figure 7-9 show the eastbound validation profile of this route with the observed data for both peaks.

7.15 Figure 7-10 show the westbound validation profile of this route with the observed data for both peaks.

Queue Comparison

- 7.16 In addition to the journey time validation of the model, TAG also recommends a review of the queues in the model and how these relate to existing queues. Although journey times provide a more accurate representation of the existing delays, the visual comparison of the queue patterns in the area provides further reassurance to support the model operation and results.
- 7.17 Two main sources have been used to understand the main queues in the model area: survey videos and live traffic information from Google Maps on the day the surveys took place.
- 7.18 The main queues in the AM peak hour are:
 - Queues approaching the signalised crossroads of the B1150 and A149; and
 - Queues approaching the signalised crossroad of Cromer Road and The North Walsham Bypass.
- 7.19 Figure 7-11 shows the typical traffic conditions from Google Maps, on a neutral weekday at 08:30.
- 7.20 Figure 7-12 below, shows a peak hour average speed plot extracted from the model at the same time. The comparison shows that the model provides a reasonable representation of the queuing patterns in the area.
- 7.21 It should be noted that the lower speeds along Millfield Road, Aylsham Road or Tungate Road shown on the average speed plots, result from lower speeds coded in the model to represent the impact of on-street parking or narrow roads.

Figure 7-11 - Typical queues from Google Traffic on a Wednesday, 08:30

85223

Figure 7-12 - AM Peak Hour Speed Plot

- 7.22 The main queues in PM peak are largely similar to those in the AM peak hour. These are:
 - Queues approaching the crossroads of the A149 and the B1150; and
 - Queues/ reduced speeds on Aylsham Road.

7.23 Figure 7-13 shows the typical traffic conditions from Google Maps, on a Wednesday at 17:00, and Figure 7-14 below, show the modelled queues during the PM peak. It can be observed that similar queueing patterns are replicated in the model.

Figure 7-14 – PM Peak Hour Speed Plot

Model Variability

- 7.24 Microsimulation models are run several times with different random seeds to obtain a statistically representative result. This approach replicates daily variability, since each run has different arrival profiles which results in a different chain of events. A representative average of the results is the obtained/ presented.
- 7.25 The observed data indicates there is limited variability in the network operation except for the signalised A149/B1150 junction. The queue along Norwich Road approaching this junction is generally long but varied in length, and often disperses every cycle, resulting in highly variable journey times along this section, depending on when the vehicles arrive at the junction.
- 7.26 This operation and the associated variability have been represented in the model. Figure 7-15 and 7-16 show the operation of the signalised junction on the A149 and Norwich Road in the VISSIM model.
- 7.27 The figures show how the queues along Norwich Road northbound build up to a significant length but are discharged fully every cycle. This operation is consistent with the observations from the video footage.

Figure 7-15 - A149/B1150 Junction – Norwich Road northbound green signal starts (AM)

Figure 7-16 - A149/B1150 Junction – Norwich Road northbound green signal ends (AM)

7.28 Figure 7-17 shows the crossroads of the A149 and the B1150 in the VISSIM model at the moment that the green period begins for traffic from the B1150 at 16:42. While Figure 7-18 shows the same junction at the end of the green period. The two figures demonstrate how the queues in this direction build up significantly, but then disperse which is in accordance with observations from video footage.

Figure 7-17 - A149/B1150 Junction – Norwich Road northbound green signal starts (PM)

Figure 7-18 - A149/B1150 Junction – Norwich Road northbound green signal ends (PM)

8. Conclusion

- 8.1 North Walsham is located on the east of England, north of Norwich. The town experiences some congestion around the signalised junctions and the town centre roads with queues often building up in these areas at AM and PM peak times. However, these queues are not too extensive with vehicles usually progressing through signals in a single cycle, with minimum impacts on nearby junctions.
- 8.2 The base models have been calibrated and validated against the observed traffic flow and journey time data in line with the required criteria set out in TAG and best practice. The calibration/ validation results exceed the requirements for turning counts and journey times and the models are therefore closely aligned with observed data. The models also replicate observed queueing patterns and specific behaviours observed from video footage. The models are therefore validated to industry standard guidelines.
- 8.3 It is considered the base models provide a close representation of the queues and delays in the network, as well as the observed driving behaviour in the area, and are fit for the purpose of testing future traffic levels/ patterns or potential changes to the road network.

Appendix A – Consistency Checks

				Difference			GI	EH				Di	fference			GE	EH	
)	Site Exit	Site Entry	13/07/2022	14/07/2022 A	M Avg	#########	#########	#########	AM Avg	Site Exit	Site Entry	13/07/2022 1	4/07/2022 P	M Avg	########	*****	#########	AM AV
omp_1	14 B	3 C	4	12	8	1/	0	1		14 B	3 C	16	-2	7	18	1	0	
	10	14 D	11	5		10	1	0			14 D	23	23	23	10		0	
omp_2	2 4	10	0	4	0	0	0	0			10		2	2	0	0	0	
Comp_3	20	3.8	56	34	45	5	3	2		2 2 C	3.8	30	57	44	1	1	3	-
	3 B	20	3	-19	-8	2	0	1		38	20	-40	-21	-31	4	2	1	
Comp_4	3 D	4 B	-10	-12	-11	2	1	1		1 3 D	4 B	-11	-13	-12	1	1	1	
	4 B	3 D	11	15	13	6	5	5		5 4 B	3 D	5	17	11	6	3	6	
Comp_5	4 C	5 A	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	4 C	5 A	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV
	5 A	4 C	-3	0	-2	0	0	0	(5 A	4 C	-5	2	-2	0	0	0	
0	5 B	6 A	2	0	1	0	0	0	(0 5 B	6 A	2	0	1	0	0	0	
⊳отр_6	6 A	5 B	0	0	0	0	0	0		0 6 A	5 B	0	-1	-1	0	0	0	
· · · · · · · · · · · · · · · · · · ·	6 B	8 A	5	9	7		0	1		16B	8 A	-27	-38	-33	3	2	3	
omp_r	8 A	6 B	6	5	6	0	0	0		A 8 0	6 B	-2	-14	-8	1	0	1	
Comp_8	7 D	8 B	-1	1	0	0	0	0		0 7 D	8 B	-2	0	-1	0	0	0	
	8 B	7 D	0	0	0	0	0	0		0 8 B	7 D	1	-1	0	0	0	0	
Comp 9	8 C	9 B	1	0	1		0	0		0 8 C	9 B	3	2	3		0	0	
omp_o	9 B	8 C	-2	2	0	0	0	0		0 9 B	8 C	0	-4	-2	0	0	0	
omn 10	9 C	10 B	-3	1	-1		0	0		9 C	10 B	-2	-2	-2		0	0	
5mp_10	10 B	9 C	5	4	5	0	0	0		0 10 B	9 C	-1	4	2	0	0	0	
omp 11	10 D	11 A	-2	-7	-5		0	1		0 10 D	11 A	-5	-1	-3		0	0	
	11 A	10 D	-8	2	-3	1	1	0		D 11 A	10 D	-11	6	-3	1	1	0	
omp 12	11 D	13 B	-8	1	-4	9	1	0		1 11 D	13 B	-19	9	-5	9	4	1	
	13 B	11 D	-19	-13	-16	6	3	2		3 13 B	11 D	-6	-17	-12	9	1	3	
omp 13	11 C	12 B	23	40	32	1	2	3		2 11 C	12 B	10	19	15	2	1	2	
	12 B	11 C	-29	-30	-30	2	2	2		2 12 B	11 C	-32	-50	-41	2	2	4	
omp 14	12 A	13 C	31	22	27	30	1	1		12 A	13 C	10	12	11		0	1	
· · -	13 C	12 A	-9	4	-3	31	0	0		D 13 C	12 A	-23	-10	-17	29	1	0	
Comp_15	13 A	14 C	2	3	3	31	0	0		D 13 A	14 C	48	14	31	33	2	1	
	14 C	13 A	5	-16	-6	32	0	1		0 14 C	13 A	2	-6	-2	30	0	0	
Comp_16	14 A	15 B	-5	10	3	0	0	0		0 14 A	15 B	4	-/	-2	1	0	0	
	15 B	14 A	-7	11	2		0	1		J 15 B	14 A	4	-1	2	1	0	0	

Appendix B - Calibration Results

	Junction From	To	Turn ID	Nodo	Observed	ALL VEH	Cars	CAR	0EH	HGV	HGV Modellad GEH	LGV	LGV	0.EH
1AC 1AB	1 A C 1 A B	10	J1_A_C J1_A B	101 101	4	0 2.828 2 0.632	2 2	0 1	2.000 0.816	Observed	0 0 0.000 0 0 0.000	2 1	0	2.000 0.000
1BA 1BC	1 B A 1 B C		J1_B_A J1_B_C	101 101	3 346	2 0.632 342 0.197	2 254	2 253	0.000 0.085	(0 0 0.000 3 34 0.164	1 56	0	1.414 0.033
1CB 1CA	1 C B 1 C A		J1_C_B J1_C_A	101 101	537 8	470 3.004 4 1.509	406	357 4	2.511 0.129	33	3 30 0.498 0 0 0.000	88	82	0.601 2.828
2AC 2AB	2 A C 2 A B		J2_A_C J2_A_B	102 102	287 74	266 1.248 76 0.265	209 52	196 56	0.881 0.564	21	9 24 0.981 6 10 1.399	46	46 10	0.022
2BA 2BC	2 B A 2 B C		J2_B_A J2_B_C	102 102	159	130 2.430 27 6.113	139 55	107	2.900 4.828		4 5 0.471 7 3 1.897	14	18 0	0.988 3.742
2CB 2CA	2 C B 2 C A		J2_C_B J2_C_A	102	78	64 1.699 345 2.120	64 273	57 256	0.841	20	6 0 3.464 6 25 0.148	8	6	0.656 1.693
3AD 3AC	3 A D 3 A C		J3_A_D J3_A_C	103	29 265	25 0.710 245 1.275	16 206	18	0.461 0.641	15	0 3 2.510 5 15 0.051	12	33	2.719 0.097
3AB 3BA	3 A B 3 B A		J3_A_B J3_B_A	103	1/4 124	159 1.182 89 3.418	99	62	4.130	15	9 17 0.500 9 17 2.160	15	19	1.399
3BC 3CR	3 B C		J3_B_C 13_C_R	103	197	167 2.193	145	135	0.841	2	2 10 3.045	29	23	1.281
3CA 3CD	3C A 3C D		J3_C_A J3_C_D	103	202	240 1.951	149	184	2.731	10	6 14 0.463 0 0 0.000	40	43	0.289
3DC 3DB	3 D C 3 D B		J3_D_C J3_D_B	103 103	3	2 0.632 6 0.282	3	2	0.632 0.258	0	0 0 0.000	0	0	0.000
3DA 4AD	3 D A 4 A D		J3_D_A J4_A_D	103 104	3 137	3 0.057 135 0.141	3 119	3 118	0.057 0.064	(0 0 0 0.000 0 0 0.000	0	0	0.000 0.012
4BA 4BD	4 B A 4 B D		J4_B_A J4_B_D	104 104	70 55	38 4.378 30 3.826	55 38	26 22	4.483 2.983	0	0 3 2.530 3 4 0.485	12	8	1.179 1.423
4CA 4CD	4 C A 4 C D		J4_C_A J4_C_D	104 104	224 120	243 1.240 120 0.046	193 93	211 102	1.249 0.936	3	2 3 0.772 3 0 2.449	26	29	0.563
5BA 5CB	5 B A 5 C B		J5_B_A J5_C_B	105	195 208	135 4.641 158 3.716	156	122	2.875 2.013		3 0 2.449 3 1 1.596	22 28	13	2.084 3.042
6AC	6A C		J5_C_A J6_A_C	105	46	42 0.680	37	41	4.768		1 3 1.543 1 0 1.414	4	33	1.897
6BA 6BC	6B A 6B C		J6_B_A J6_B_C	106	179	126 4.252	146	113	2.881		2 0 2.000	24 22 22 2	13	2.084
6CB 6CA	6 C B		J6_C_B	106	7	3 1.789	4	2	1.155	(0 1 1.414	0	0	0.000
7AD 7AC	7 A D 7 A C		J7_A_D J7_A_C	107 107	76	70 0.660 25 0.844	58	50 25	1.053		5 10 1.811 2 0 2.000	13	10	0.838 2.000
7AB 7BA	7 A B 7 B A		J7_A_B J7_B_A	107 107	56 62	45 1.526 30 4.796	42 48	39 27	0.511 3.485		5 0 3.162 6 3 1.497	9	6 0	0.937 4.000
7BD 7BC	7 B D 7 B C		J7_B_D J7_B_C	107 107	109	126 1.551 0 0.000	90	107	1.684		2 6 1.924 0 0 0.000	12	13 0	0.366
7CB 7CA	7 C B 7 C A		J7_C_B J7_C_A	107	4	4 0.076 5 4.663	4	4	0.076 3.434	:	0 0 0.000 3 0 2.449	2	0	0.000 2.000
7CD 7DC	7 D C		J7_C_D J7_D_C	107	18	34 2.183 13 1.229	17	12	2.141 0.043	-	1 4 2.090 2 0 2.000	2	1	0.816
7DB 7DA	7 D B 7 D A		J7_D_B J7_D_A	107	128	129 0.119 124 1.893 12 4.416	128	105	2.503		2 3 0.487 2 5 1.561 2 0.530	13	18	1.247
8AB 8BA	8A B		J8_A_B 18_B_A	108	141	91 4.627	114	78	3.641	0	0 0 0.000	21	13	1.981
8BC 8CB	8B C 8C B		J8_B_C J8 C B	108	105	153 4.194 176 1.989	85	120	3.466		6 15 2.826 5 8 1.089	12	17	1.385
8CA 9AC	8 C A 9 A C		J8_C_A J9_A_C	108 109	78 51	38 5.191 45 0.873	69 46	32 41	5.148 0.766		2 0 2.000 1 1 0.000	5	6 0	0.447 0.535
9AB 9BA	9 A B 9 B A		J9_A_B J9_B_A	109 109	2	2 0.000 5 1.645	1	0	1.414 2.775		0 0 0 0.000 1 1 0.236	1	2 0	0.816
9BC 9CB	9 B C 9 C B		J9_B_C J9_C_B	109 109	139 229	161 1.784 213 1.049	112 193	127	1.412 1.425	1	8 16 2.357 7 8 0.276	16	17 32	0.295
9CA 10AD	9C A 10A D		J9_C_A J10_A_D	109	16	10 1.711 1 1.897	14	10	1.202	0	D 0 0.000 D 0 0.000	3	1	0.000 1.414
10AC 10AB	10 A C 10 A B		J10_A_C J10_A_B	110 110	4	0 1.414 2 1.155 0 2.000	3	0	0.000 2.449 1.414	0	0 0 0.000 0 0 0.000	0	2	2.000
10BD 10BD	10 B D 10 B C		J10_B_D J10_B_C	110	133	165 2.618 41 1.660	109	131	2.047	3	9 17 2.266	15	16	0.329
10CB 10CA	10 C B 10 C A		J10_C_B J10_C_A	110 110	55	64 1.142 0 2.449	48	53	0.690	(0 0 0.000 0 0 0.000	6	11	1.686
10CD 10DC	10 C D 10 D C		J10_C_D J10_D_C	110 110	41 33	28 2.251 38 0.839	33 31	28 37	0.943 0.980	(0 0 0 0.000 0 0 0.000	5	0	3.162 0.280
10DB 10DA	10 D B 10 D A		J10_D_B J10_D_A	110 110	181 5	158 1.790 15 3.198	151	131 14	1.684 4.198		7 8 0.258 0 0 0.000	18	19	0.232 0.502
11AD 11AC	11 A D 11 A C		J11_A_D J11_A_C	111	34 129	25 1.627 142 1.117	30	25	0.924 0.777	9	0 0 0 0.000 9 14 1.592	2	18	2.000
11AB 11AA 11PA	11 A B 11 A A		J11_A_B J11_A_A	111	12	14 0.461 13 4.470	11	14	3.812		0 3 2.366	0	0	0.000
11BD 11BC	11 B D 11 B C		J11_B_D 	111	13	0 5.099	11	0	4.690			0	0	0.000
11BB 11CB	11 B B 11 C B		J11_B_B J11_C_B	111	0	0 0.000	0	0	0.000 0.948	0	0 0 0.000	0	0	0.000
11CA 11CD	11 C A 11 C D		J11_C_A J11_C_D	111 111	162 3	133 2.401 0 2.449	133 3	108 0	2.244 2.449		7 5 0.861 0 0 0.000	17	20 0	0.608
11CC 11DC	11 C C 11 D C		J11_C_C J11_D_C	111	0	11 4.712 0 2.000	0	4	2.846 1.414		0 0 0 0.000 0 0 0.000	0	7	3.755 1.414
11DB 11DA	11 D B 11 D A		J11_D_B J11_D_A	111	3	0 2.449 4 4.895	3	0	2.449 4.321		0 0 0.000 0 0 0.000	0	0	0.000 2.000
11DD 12AC	11 D D 12 A C		J11_D_D J12_A_C	111 112 112	385	327 3.055	308	263	2.691	14	4 11 0.985	55	54	0.101
12BA 12BA	12 B A 12 B C		J12_B_A J12_B_C	112	86	84 0.272 120 3.064	74	73	0.093	(0 1 1.414 7 15 2.350	12	9	0.827
12CB 12CA	12 C B 12 C A		J12_C_B J12_C_A	112 112	85 350	99 1.495 320 1.667	66 262	68 256	0.202 0.370		5 5 0.045 4 14 0.121	12	27 50	3.360 2.477
13AC 13AB	13 A C 13 A B		J13_A_C J13_A_B	113 113	511 35	406 4.891 26 1.610	417 33	338 26	4.066 1.269	15	5 10 1.276 0 0 0.000	69 1	58	1.407 1.414
13BA 13BC	13 B A 13 B C		J13_B_A J13_B_C	113 113	40	64 3.340 0 1.414	35	62	3.889 1.414	(0 0 0.000 0 0 0.000	3	2 0	0.632
13CB 13CA 144D	13 C A 13 C A		J13_C_B J13_C_A	113	10 455 47	2 3.293 399 2.715 74 2.477	8 354 24	2 325 37	1.555	15	0 0.000 5 15 0.130 1 13 4.440	81	59	2.600
14AC 14AB	14 A C 14 A B		J14_A_C J14_A_B	114	277	247 1.825 161 2.535	236	205 139	2.067 4.182		5 5 0.067 6 4 0.749	33	37	0.676
14BA 14BD	14 B A 14 B D		J14_B_A J14_B_D	114 114	89 160	117 2.764 141 1.578	70 110	97 104	2.965 0.614	2	9 4 1.938 1 16 1.113	6 27	16 21	2.992 1.268
14BC 14CB	14 B C 14 C B		J14_B_C J14_C_B	114 114	216 179	155 4.479 146 2.630	172 123	131 114	3.374 0.789	1	7 5 0.707 1 3 2.903	29 44	19 28	1.985 2.694
14CA 14CD	14 C A 14 C D		J14_C_A J14_C_D	114 114	279	264 0.898 51 0.557	234 35	225 46	0.621 1.662		7 12 1.523 0 0 0.000	31	28	0.562 2.258
14DC 14DB	14 D C 14 D B		J14_D_C J14_D_B	114	194	30 3.791 168 1.906	42 133	29	2.145 2.120	15	3 0 2.449 5 16 0.316	9 39	42	3.546 0.541
15AC	15 A C		J14_D_A J15_A_C I15_A_B	114	30 60	21 1.815	21	21	0.033		1 0 1.414	3	0	2.449
15AA 15BA	15 A A 15 B A		J15_A_A J15_B_A	115	0	0 0.000	0	0	0.000 4.269	0	0 0 0.000 2 3 0.744	0	0	0.000
15BC 15BB	15 B C 15 B B		J15_B_C J15_B_B	115 115	307 1	298 0.535 14 4.716	252 1	248 8	0.237 3.271	15	5 13 0.674 0 2 2.000	33	37	0.668
15CB 15CA	15 C B 15 C A		J15_C_B J15_C_A	115 115	400 165	409 0.433 142 1.852	322 137	328 127	0.308 0.884	1	1 14 0.862 1 0 1.414	62 22	67 15	0.635 1.577
15CC 22AC	15 C C 22 A C		J15_C_C J22_A_C	115 122	0	0 0.000 195 0.339	0	0 135	0.000 0.333	10	0 0 0.000 6 22 1.324	35	0	0.000 0.472
22AB 22BC 22BA	22 A B 22 B C 22 P A		J22_A_B J22_B_C	122	141 6	138 0.284 0 3.464	112 3	114	0.212 2.449 1.854		9 9 0.116 0 0 0.000	20	14	1.442 2.449 0.403
22CA 22CB	22 C A 22 C B		J22_C_A J22_C_A J22_C_B	122 122 122	389	357 1.683 12 0.014	327	297	1.704	11	9 24 1.109	43	35	1.205
23AB 23AC	23 A B 23 A C		J23_A_B J23_A_C	123	47	47 0.000	41	41 159	0.016	-	0 0 0.000	6	6	0.041
23AD 23BA	23 A D 23 B A		J23_A_D J23_B_A	123 123	18	16 0.485 47 0.229	11 36	10 36	0.324 0.025		1 0 1.414 3 4 0.704	6	6	0.020
23BC 23BD	23 B C 23 B D		J23_B_C J23_B_D	123 123	224 51	174 3.575 51 0.000	198 37	145 38	4.072 0.139		5 8 1.177 1 0 1.414	21 13	21	0.022 0.041
23CA 23CB	23 C A 23 C B		J23_C_A J23_C_B	123 123	123	117 0.525 55 1.557	81 47	75	0.633 0.029	8	B 9 0.259 B 4 1.681	34	33	0.155 2.940
2300 23DA 23DB	23 D A 23 D B		J23_C_D J23_D_A J23_D_B	123	11	23 0.179 12 0.295 10 0.244	13 4 7	4	0.025		4 5 0.494 2 3 0.661	3	3	0.000
23DC	23 D C		J23_D_C	123	18	17 0.203	6	2	2.000	1	8 12 1.293	4	3	0.506
Fig	Figure 8-1. AM Cal Turns													

Junction From To Turn ID Node 1 A C J1 A, C 10 14 </th <th>ALL VEH GEH Observed Modelled GEH 1 3 1.332 1 3 4 0.584 1 6 4 0.944 1 563 536 1.143</th> <th>CAR Observed Modelled GEH 2 3 0.717 2 3 0.661 4 4 0.050 452 456 0.197</th> <th>HGV Observed Modeled GEH Observed 0 0 0.000 0.000 0</th> <th>LGV GEH 0 0 0.000 1 1 0.049 1 0 1.414 78 64 1.705</th>	ALL VEH GEH Observed Modelled GEH 1 3 1.332 1 3 4 0.584 1 6 4 0.944 1 563 536 1.143	CAR Observed Modelled GEH 2 3 0.717 2 3 0.661 4 4 0.050 452 456 0.197	HGV Observed Modeled GEH Observed 0 0 0.000 0.000 0	LGV GEH 0 0 0.000 1 1 0.049 1 0 1.414 78 64 1.705
1 C B J1,C,B 10 1 C A J1,C,A 10 2 A C J2,A,C 10 2 A B J2,2,A 10 2 B A J2,B,A 10 2 B C J2,B,C 10	1 467 439 1.223 1 2 0 2.000 2 482 438 2.073 2 482 438 1.064 2 115 1.16 0.102 2 53 48 0.696	388 374 0.709 1 0 1.414 387 378 0.481 70 83 1.486 95 95 0.041 41 44 0.438	13 19 1397 1 0 1.414 15 13 0.411 2 3 0.632 3 0.000 1 0 1.033	54 46 1.109 0 0 0.000 65 47 2.478 12 18 1.479 13 19 1.386 9 4 1.961
2C B J2,C,B 10 2C A J2,C,A 10 3A D J3,A,D 10 3A C J3,A,C 10 3A B J3,A,B 10 3B A J3,B 10	2 79 76 0.352 2 353 323 1.632 3 60 52 1.104 3 287 282 0.293 3 194 184 0.727 3 148 134 1.153	70 72 0.190 296 280 0.958 47 46 0.191 232 219 0.842 164 161 0.220 113 111 0.198	1 0 1414 12 16 0.944 0 0 0.000 7 8 0.276 9 8 0.290 9 4 1.891	6 4 0.749 37 28 1.626 12 6 1.981 45 55 1.407 14 15 0.172 23 19 0.816
3B D JB_ED 10 3B C JB_CC 10 3C B JB_CC 10 3C A JB_CC 10 3C A JB_CC 10 3C C JB_CC 10 3C A JB_CC 10	3 135 135 0.009 3 290 226 3.955 3 269 211 3.727 3 275 258 1.038 3 28 23 0.907	119 116 0.300 233 201 2.176 228 191 2.545 215 216 0.058 26 23 0.523	2 3 0.772 9 7 0.632 6 3 1.252 11 16 1.336 0 0 0.000	11 16 1.385 45 18 4.746 32 17 3.077 40 26 2.379 1 0 1.414 0 200 1.414
3D 8 33.D.8 10 3D 4 33.D.8 10 4D 4 34.A.D 10 4B 0 4,4.B.D 10 4B 0 4,4.B.D 10	3 6 9 1.079 3 1 0 1.414 4 139 142 0.261 4 107 68 4.128 4 91 95 0.379 4 91 95 0.379	6 9 1.079 1 0 1.414 127 131 0.326 88 52 4.296 72 79 0.749 270 0.44	0 0 0.000 0 0.000 0 0.000 2 0 2.000 0 3 2.550	0 0 0.000 0 0 0.000 8 11 1.092 16 16 0.075 13 13 0.028
4 C D J_4_C_D_1 10 4 D C Banned Movement) Banned M 10 4 D B (Banned Movement) Banned M 10 4 D C (Banned Movement) Banned M 10 4 D C (Banned Movement) Banned M 10 5 A C (Banned Movement) Banned M 10	30% 200 201 4 121 131 0.930 4 0 0 0.000 4 0 0 0.000 4 0 0 0.000 5 0 0 0.000	102 97 0.486 0 0 0 0.000 0 0 0.000 0 0 0.000	2 3 0.632 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000	12 31 4.148 0 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000
SA Statilized Movements) Batried M G SI A SIS_B_A 100 SI C Banned Movement) Banned M SC B S_C_B 100 SC B S_C_A 100 SC A JS_C_A 100 SC A JS_C_A 100 SC A JS_C_A 100	0 0 0 0000 5 180 110 5.818 5 0 0 0.000 5 194 139 4.304 5 248 282 2.074 6 50 38 1.737	0 0 0 0.000 142 98 4.002 0 0 0.000 171 122 4.084 213 247 2.220 42 38 0.550	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cA B J6,A,B 100 cB A J6,B,A 100 cB C J6,B,A 100 cB C J6,B,A 100 cB C J6,C,B 100 cC B J6,C,A 100 cC A J6,C,A 100 cC A J6,C,A 100	5 148 100 4,320 6 159 94 5.769 6 9 7 0.670 6 5 5 0.000 6 21 16 1.162 7 81 101 2.052	128 83 4.463 6 7 0.430 4 4 0.000 14 16 0.516 68 80 1.356	4 0 2.828 1 0 1.414 0 0 0.000 0 0.000 0 0.000 1 3 1.414	12 17 1.277 24 12 2.884 0 0 0.000 1 1 0.000 0 0 0.000 10 18 2.115
7.A C J/_AC III 7.A B J7_AB 10 7.B A J7_BA 10 7.B D J7_B,O 10 7.B C J7_B,C 10 7.C B J7_B,C 10	27 21 21 203 7 64 59 0.625 7 40 35 0.741 7 116 104 1.174 7 5 5 0.000 7 5 4 0.496	17 21 0.339 53 55 0.232 30 31 0.226 91 91 0.021 5 5 0.000 4 4 0.025	1 0 1 414 1 0 1 414 0 0 0 548 2 3 0.744 0 0 0.000 0 0 0.000	4 0 2.828 7 4 1.089 9 4 1.938 18 10 2.230 0 0 0.0000 1 0 1.414
7 C A J/ C.A 10 7 C D J/ C.D 10 7 D C J/ D.C 10 7 D B J/ C.D 10 7 D A J/ D.A 10 8 A C J8.A.C 10	29 22 1439 7 22 16 1.266 7 24 17 1.594 7 79 78 0.164 7 101 108 0.688 8 20 18 0.530	24 19 1.136 17 16 0.134 21 17 0.966 66 64 0.236 82 89 0.773 15 16 0.179	2 3 0532 0 0 0.000 0 0 0.000 2 0 2.000 2 0 2.000 1 0 1.414	2 0 2.000 5 0 3.162 2 0 2.000 10 13 1.008 15 19 0.936 3 2 0.632
ah B J8,A,B 100 ab A J8,B,A 100 ab C J8,C,B 100 ab A J8,C,C,A 100 ab C J9,A,C 100	8 99 67 3.331 8 99 68 3.339 8 116 153 3.194 8 106 136 2.740 8 77 56 2.549 9 43 42 0.130	79 59 2.453 71 62 1.142 100 126 2.424 88 112 2.290 59 48 1.475 42 42 0.023	4 0 2.828 1 0 1.414 2 6 2.093 0 0 0.000 1 0 1.414 0 0 0.000	13 8 1.4/4 22 7 4.022 11 21 2.511 14 24 2.334 14 8 1.809 0 0 0.000
aA B J9,A,B 100 aB A J9,B,A 100 aB C J9,B,A 100 aB B,C,B J9,B,A 100 aB B,C,B J9,C,B 100 aB B,C,C,A 100 110,C,A 111 taA D J10,C,A 111 111	9 4 1 1.897 9 4 2 1.292 9 134 169 2.828 9 178 192 1.008 9 24 14 2.333 0 6 0 3.464	3 1 1.414 1 2 0.676 113 139 2.350 145 160 1.175 20 12 1.972 2 0 2.000	0 0 0 0.000 0 0 0.000 3 6 1.511 0 0 0.000 0 0 0.000 0 0 0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10A B J0AC 11 10A B J0AB 11 10B D J0AB 11 10B 0	0 6 8 0.756 0 0 2 1.924 0 127 168 3.395 0 47 41 0.905 0 34 30 0.671	0 0 0.000 6 8 0.756 0 2 1.924 108 139 2.768 44 41 0.460 29 30 0.221	0 0 0.000 0 0 0.000 2 6 2.093 1 0 1.414 0 0.000	0 0 0 0.000 0 0 0.000 14 23 2.143 1 0 1.414 2 0 2.000
10C D 110 C D 11 10D C 110 D C 11 10D B 10 D B 10 D B 11 10D A 110 D A 11 11A D 111 A C 11 11A C 111 A C 11	28 20 1.644 0 28 20 1.644 0 27 45 2.978 0 162 167 0.394 0 5 4 0.391 1 33 18 2.993 1 111 150 3.418	21 20 0.232 19 35 3.038 130 133 0.257 5 4 0.397 28 16 2.583 01 122 3.044	0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 2 6 3120	6 0 3.464 8 10 0.698 27 34 1.285 0 0 0.000 2 2 0.000 18 21 0.734
11 A B J11 A, B 11 11 A A J11 A, A 11 11 B A J11 B, D 11 11 B C J11 B, D 11 11 B C J11 B, C 11 11 B B J11 B, C 11 11 B B J11 B, C 11	1 9 12 0.854 1 8 9 0.293 1 8 10 0.667 1 3 2 0.632 1 2 0 0.000 1 0 0 0 0.000	8 12 1.193 6 9 1.046 6 6 0.000 2 2 0.000 2 2 0.000 0 0 0.000	0 0 0.000 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000	1 0 1.414 2 0 2.000 2 4 1.155 0 0 0.000 0 0 0.000 0 0 0.000
11 C B J11.C.B 11 11 C A J11.C.A 11 11 C D J11.C.A 11 11 C C J11.C.C 11 11 D C J11.C.C 11 11 D C J11.D.C 11 11 D B J11.D.B 11	1 10 4 2.314 1 163 154 0.703 1 4 0 2.828 1 1 2 0.702 2 0 2.000 1 0 0 0.000	6 4 0.944 126 124 0.183 3 0 2.449 1 2 0.782 2 0 2.000 0 0 0.000	0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000	3 0 2.449 33 30 0.498 1 0 1.414 0 0 0.000 0 0 0.000 0 0 0.000
11 D A J11.D.A 11 11 D D J11.D.D D 11 12 A C J12.A.C 11 12 12 A B J12.A.S 11 12 A 11 12 A 11 12 A 11 12 A 11 12 B A J12.B.A 11 12 B C J12.B.C 11 12 B C J12.B.C 11 12 B C J12.B.C 11 12 A 11 12 B C J12.B.C 11 12 B C J12.B.C 11 12 11 12 11 12 11 11 12 11 12 11 12 11 12 12 11 11 12 11 12 11 12 11 12 11 11 11 11 12 11 11	1 27 43 2.667 1 0 0.000 0.000 2 388 390 0.104 2 101 56 5.137 2 51 44 0.956 2 68 85 1.987	22 33 2.080 0 0 0.000 303 315 0.691 80 46 4.334 44 42 0.243 55 63 0.991	1 0 1.414 0 0 0.000 10 14 1.141 0 0 0.000 0 0 0.000 3 7 1.643	2 10 3.225 0 0 0.000 68 61 0.878 20 10 2.612 6 2 2.000 10 16 1.713
12C B J12_C_B 111 12C A J12_C_A 11 13A C J13_A_C 11 13A B J13_A_B 11 13B A J13_B_C 11 13B C J13_B_C 11	2 109 125 1.510 2 442 395 2.292 3 501 441 2.746 3 35 400 0.777 3 25 42 2.967 3 9 4 2.079	85 109 2.446 358 319 2.097 394 357 1.917 30 40 1.651 43 41 0.379 8 4 1.753	0 0 0.000 9 12 1.053 11 14 0.822 0 0 0.000 0 0 0.000 0 0 0.000	19 16 0.655 66 63 0.342 88 71 1.948 4 0 2.828 2 2 0.259 0 0 0.000
13C B J13.C.B 11 13C A J13.C.A 11 14A D J14.A.D 11 14A C J14.A.C 11 14A B J14.A.B. 11 14B A J14.B.A.B 11	3 8 10 0.667 3 492 428 2.998 4 60 61 0.173 4 237 227 0.650 4 132 122 0.682 4 96 58 4.369	11 10 0.309 399 350 2.537 53 49 0.517 194 189 0.332 105 111 0.582 80 58 2.688	0 0 0.000 10 13 0.745 1 0 1.414 5 7 0.760 3 3 0.000 4 0 2.828	3 0 2.449 6 1.2 2.014 34 31 0.553 22 8 3.647 12 0 4.899
14 B D J44 B,D 11 14 C J44 B,C 11 14 C A J44 C,C 11 14 C A J44 C,C 11 14 C A J44 C,C 11 14 C J J44 C,C 11 14 C C C C C J44 C,C 11 14 C C C C C C C C C C C C C C C C C C C	25.3 261 0.142 4 239 199 2.703 4 194 150 3.331 4 289 261 1.679 4 58 55 0.446 4 54 57 0.920	211 212 0.079 189 157 2.405 180 129 2.605 238 208 2.009 51 50 0.212 52 52 0.021 407 409 0.037	10 11 0.443 3 4 0.485 4 3 0.450 5 8 1.246 1 1 0.236 2 3 0.689 40 40 707	38 37 0.147 44 38 0.978 25 18 1.405 44 45 0.142 6 4 0.944 10 2 3.321
100 A 114 D-A 114 114 D-A 114 D-A 114 114 D-A 114 D-A 114 114 D-A 114 D-A 114 115 A B J15 AA 115 115 B A J15 AA 115 116 B A J15 BA 111 116 B C U5 B 111	201 222 1.024 4 85 93 0.858 5 20 21 0.254 5 60 51 1.215 5 0 0 0.000 5 190 172 1.304 5 280 225 2872	153 192 0.237 66 70 0.632 16 17 0.270 50 51 0.134 0 0 0.000 151 138 1.047 230 193 2.562	1 3 0.689 2 3 0.689 1 1 0.000 0 0 0.000 0 0 0.000 4 0 2.828 7 11 1.426	23 17 1.303 14 20 1.411 2 3 0.661 9 0 4.243 0 0 0 0.000 31 34 0.535 40 31 1.591
15 B B J15 B. B 11 15 C B J15 C. B 11 15 C A J15 C. A 11 15 C C J15 C. C 11 15 C C J15 C. C 11 15 C C J15 C. C 11 22 A C J22 A. C 12 22 A B J22 A. C 12	5 1 4 1.875 5 361 358 0.137 5 180 164 1.251 5 0 0 0.000 2 338 304 1.921 2 74 89 1.709	1 4 1.875 294 298 0.209 160 148 0.996 0 0 0 0.000 282 259 1.411 47 69 2.859	0 0 0.000 8 10 0.651 2 3 0.632 0 0 0.000 10 10 0.048 10 10 0.047	0 0 0.000 52 51 0.160 14 13 0.286 0 0 0.000 46 35 1.737 17 11 1.738
22B C J22 B C 12 22B A J22 B A 12 22C A J22 C A 12 22C B J22 C A 12 23A B J23 A B 12 23A C J23 A C 12	2 8 8 0.018 2 163 155 0.655 2 367 363 0.194 2 5 6 0.447 3 38 38 0.049 3 120 115 0.438	8 8 0.018 127 125 0.218 316 303 0.750 3 2 0.632 27 27 0.029 105 96 0.893	0 0 0.000 6 2 2.000 10 14 1.115 2 2 0.000 5 5 0.044 2 4 1.131	0 0 0 0.000 30 28 0.334 41 47 0.853 0 2 2.025 6 6 6 0.020 13 15 0.599
23A D 123A,D 12 23B A	s 9 4 1.915 3 68 69 0.121 3 152 151 0.114 3 12 15 0.816 3 160 151 0.722 3 160 151 0.722 3 142 145 0.284	8 4 1.609 58 59 0.085 130 125 0.483 11 13 0.577 124 117 0.601 132 138 0.474 8 12 4.072	0 0 0.000 0 0 0.000 5 8 1.194 0 0 0.000 6 6 0.121 0 0 0.000 4 4 0 0.00	1 0 1.311 10 10 0.110 17 18 0.239 1 2 0.816 30 27 0.504 10 8 0.702 2 0 000
230 A 223 C 12 230 A 223 D A 223 D A 22 230 B 223 D B 223 D B 12 230 C 122 D C 12	19 19 19 0.011 3 72 64 0.958 3 93 104 1.089	0 12 1.336 16 15 0.254 61 53 1.046 80 85 0.534	• •	3 4 0.510 11 11 0.000 9 15 1.719
Figure 8-2. PW Cal Turi	15			

Appendix C – Flow Diagram

Appendix D – Journey Time Validation Results

Figure 8-25. JT5 Route Diagram

Figure 8-35. JT7 Route Diagram

Appendix E – Journey Time Variability

aecom.com

\varTheta aecom.com

Coltishall Vissim Model Validation Report

ESCO Developments, Flagship Housing Group and Lovell Partnerships

21 April 2023

Delivering a better world

Quality information

Prepared by	Checked by	Verified by	Approved by
WG	JNP	PA	
Will Glover Graduate Consultant	Javier Navarro Pardo Principal Consultant	Phil Arnold Associate Director	Bevin Carey Regional Director

Revision History

Revision	Revision date	Details	Authorized	Name	Position
1.0	21/04/2023	Revision for Client Review	BC	B Carey	Regional Director

Distribution List

Hard Copies PDF Required Association / Company Name

Prepared for: The Client Group

Prepared by: Will Glover

AECOM Limited Marlborough Court 10 Bricket Road St Albans AL1 3JX United Kingdom

T: +44(0)1727 535000 aecom.com

© 2023 AECOM Limited. All Rights Reserved.

This document has been prepared by AECOM Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Table of Contents

1. Introduction	6
Background and Report Structure	6
Model Scope	6
2. Data Collection and Analysis	8
Introduction	
Manual Classified Turning Count (MCTC) Data	
Automatic Traffic Count (ATC) data	
Journey Time Data	9
Camera Footage	9
Data Review and Analysis	10
Consistency Review	10
Peak Hour Analysis	10
3. Demand Development	
Overview	
Methodology	
Convergence	
Routing Analysis & Closures	
4. Network Development	
Network coding	
Desired Speed Decisions	
Reduced Speed Areas	
Priority Rules and Conflict areas	15
Public Transport	15
Differences between AM and PM model networks	
5. Model Calibration	
Introduction	
Flow Calibration Criteria	
Flow Calibration Results	
Calibration Parameters	19
6. Model Validation	
Introduction	
Journey Time Validation Results	
Queue Calibration	
AM Peak Hour	
PM Peak Hour	
Model Variability	
7. Conclusion	
Appendix A MCTC Turning Counts	
AM – All vehicles	
AM – Cars	
AM – HGV	
AM – LGV	

35
36
37
38
39
40
40
41
43
45
47
48
50
52

1. Introduction

Background and Report Structure

- 1.1 ESCO Developments, Flagship Housing Group and Lovell Partnerships ('The Client Group') have commissioned AECOM to develop a VISSIM base model of the village of Coltishall to set up a reliable basis to assess the future operation of the network and the potential impact of the North Walsham Western Urban Extension (NWWUE). The model has been calibrated and validated to replicate the operation of the town based on data collected in November 2022.
- 1.2 This report documents the data collection and analysis, the development of the network and base year demand, and the calibration/ validation. The report is structured as follows:
 - Data collection and analysis;
 - Demand development;
 - Network Development;
 - Model Calibration results;
 - Model Validation results; and
 - Conclusion.

Model Scope

1.3 The Vissim model has been developed for the area shown in Figure 1-1. The Coltishall network has no signalised junctions with all the junctions operating as priority controlled. The model area includes a mini roundabout to the west of the village, a small gyratory road around a petrol station in the centre of the village and the narrow bridge over the river in the middle of the village. The Vissim model area shown in Figure 1-1 includes the B1150, which is the main corridor between Norwich and North Walsham, and the critical junctions/ links constraining the capacity of the corridor, such as the bridge and the village centre.

Figure 1-1 – Coltishall Modelled Area

1.4 Figure 1-2 below shows the key junctions/ locations identified from the survey data/ observations in the model area that have a critical impact on network operation.

Figure 1-2 – Key areas in Coltishall

- 1.5 The key areas are defined as follows:
 - 1. Roundabout linking Rectory Road to the B1150;
 - 2. Bridge over the River Bure on the B1150;
 - 3. Gyratory road around the Esso Petrol Filling Station (PFS); and
 - 4. High Street in Coltishall.
- 1.6 These areas have been considered when developing the model to replicate the existing operation and driving behaviour observed in the video footage available. It should be noted that the operation of some of these critical areas is entirely dependent on variable factors such as on-street parking and courtesy/ give way behaviours, which have been modelled and calibrated to observed queuing patterns/ levels of delay.
- 1.7 The Vissim Base models have been developed for the AM and PM peak hours, including 15-minute warmup and 15-minute cool-down periods.
- 1.8 The Base models have been developed in line with modelling requirements and the calibration and validation criteria defined in Transport Analysis Guidance (TAG) and the Guidelines for the Use of Microsimulation Software published in May 2022 by National Highways.

2. Data Collection and Analysis

Introduction

2.1 The data collection exercise undertaken by AECOM to inform the Vissim Base model development has been summarised in this section.

Manual Classified Turning Count (MCTC) Data

2.2 Manual Classified Turning Counts (MCTCs) were carried out at the sites indicated in Figure 2-1 on Thursday 10th November 2022 between 07:00 and 19:00. The MCTC data was used to develop the base model demand and calibrate the turning flows at each junction shown in Figure 2-1.

Figure 2-1 – Manual Classified Turning Counts sites

Automatic Traffic Count (ATC) data

- 2.3 The link counts were collected using Automatic Traffic Count (ATC) loops. The ATC data was collected over two weeks between Thursday 10th of November and Wednesday 23rd of November 2022.
- 2.4 Five ATC sites were surveyed in total that have been used to inform the total trip ends at the entry/ entry points to the model. Their locations are shown below in Figure 2-2.

Figure 2-2 – Link counts (Automatic Traffic Counts)

Journey Time Data

2.5 The surveys also captured floating car data for two routes through the modelled area on 30th November 2022. The surveyed journey time routes are shown in Figure 2-3.

Figure 2-3 Journey Time Routes

Camera Footage

2.6 Camera footage, which was recorded to produce the MCTC and floating car journey time data, was obtained to provide the modellers with a more detailed view of the driving behaviour in the area.

Data Review and Analysis

Consistency Review

- 2.7 The locations of MCTC counts with labelled approach arms and model entry points to assist with the analysis of the data consistency review can be found in Appendix A.
- 2.8 The consistency between the different data sets was assessed to understand the reliability of the data and identify any discrepancies which could affect the model development. The full details of the consistency checks undertaken can be found in Appendix B.
- 2.9 The flow analysis and consistency checks highlighted a small flow difference between some junctions, these differences were below GEH 3 and will not affect the model calibration.
- 2.10 However, the flow difference between the PFS and the Rectory Road/ Norwich Road mini roundabout (Causeway Drive) could be affected by a potential increase in queue length from the bridge. To address this flow difference and ensure the model will capture any detrimental effects on Causeway Drive in the forecast scenarios, an additional model zone was added to represent Causeway Drive, to balance the flows between the junctions.

Peak Hour Analysis

- 2.11 The survey data available was processed to identify the morning and evening peak hours by analysing the profile of traffic volumes during the surveyed period. For this calculation, all vehicle movements have been considered as well as calculations of the inbound flows to the model area.
- 2.12 MCTC data was analysed using two methods to determine the peak hour, by totalling all movements and by totalling only entries in the model area. In the AM period, the peak hour was calculated to be 07.45-08.45, both when considering entries into the modelled area and when using all available data. In the PM period calculations similarly returned a consistent peak hour of 16.30-17.30 using both methods. The ATC data was also analysed and showed the same peak hours as analysis of the MCTC data.

Figure 2-4 ATC Neutral Day Average All Movements Rolling Hour

- 2.13 Based on the assessment of the cumulative hourly flows shown above in Figure 2-4, the following morning and evening peak periods for the general traffic were assumed as follows:
 - Morning Peak (AM): 07:45 to 08:45; and
 - Evening Peak (PM): 16:30 to 17:30.

- 2.14 The modelled simulation periods include a 15-minute warm-up period to fully saturate the network before the simulated peak hour and a 15-minute cool-down period to allow vehicles to complete their journeys. The modelled periods are therefore:
 - AM modelled period: 07:30 09:00; and
 - PM modelled period: 16:15 17:45.

3. Demand Development

Overview

- 3.1 This section describes the demand methodology and the routing analysis undertaken to develop and calibrate the traffic demand and routing in the Vissim Base model.
- 3.2 The model was developed using the dynamic assignment module, as it would allow the model to predict future changes in routing as a consequence of the demand growth, committed schemes or proposed mitigation measures in the area.
- 3.3 The traffic demand has been calculated for each vehicle type included in the model (Car, Light Goods Vehicles (LGV) and Heavy Goods Vehicles (HGV)) for the modelled peak hours. The available survey data has been used to develop the hourly Origin-destination matrices and the 15-minute profiles for each origin zone.

Methodology

- 3.4 To ensure the best possible correlation between the observed data and the Vissim model demand, the vehicle inputs and origin/destination routing have been developed by combining two different components:
 - Prior Matrix This was developed using MCTC turning count proportions to define origin to destination routes.
 - New Zones Matrix a synthetic zone was added on Causeway Drive, labelled as Zone 2. The demand at this zone has been estimated based on the flow differences identified between the adjacent MCTC data.
- 3.5 Figure 3-1 shows the location of the defined zones in Vissim. The MCTC sites are labelled with numbers 101-105, whilst the origin zones are labelled with numbers 1-9.

Figure 3-1 Vissim Zone Map

- 3.6 The movements to and from Zone 2, which was added as a synthetic zone, were estimated from flow difference between MCTC-1 and MCTC-5. All other zone movements were estimated through turn proportion data gathered from MCTC surveys.
- 3.7 The final matrix was sense-checked against key movements in the modelled area to ensure accuracy, most notably the movement between Zones 4 to 9, since this is the central corridor which passes through Coltishall, linking North Walsham to Norwich in the south.

Convergence

3.8 The models have been converged using standard convergence criteria from Vissim, although there is no route choice available in the Coltishall model network.

Routing Analysis & Closures

- 3.9 The routing proportions obtained from the convergence process were analysed and reviewed to ensure that there are not unrealistic route patterns included in the model.
- 3.10 Several paths were highlighted as unrealistic and have been closed to prevent abnormal or unrealistic driving behaviour. Some examples of these routes are shown in Figure 3-2 and Figure 3-3.
- 3.11 As shown in Figure 3-2, a route for vehicles travelling northbound on the B1150 which involves looping around the roundabout on Rectory Road to turn onto Mill Road has been closed, since drivers can make a direct right-turn onto Mill Road before the roundabout.

Figure 3-2 Closed route at Rectory Road roundabout

3.12 As shown in Figure 3-3, a route for vehicles travelling from the B1150 onto the High Street which involves a circulating around the petrol station has been closed, since drivers can make continue straight onto the high street instead.

Figure 3-3 Closed route at petrol station gyratory

4. Network Development

Network coding

- 4.1 Scaled Bing maps within Vissim have been used to code the network geometry and structure, such as number of lanes and flare lengths and reference was also made to Google Maps and Streetview to ensure the network reflects conditions on the ground.
- 4.2 Observation from the video footage available have also been used to inform the network coding and replicate the operation of the existing layout.

Desired Speed Decisions

- 4.3 Desired Speed Decisions, defining the speed distribution that vehicles follow at each point of the network, have been updated to represent the posted speed limits for each link.
- 4.4 The speed distributions used in the model, and the variability that a group of vehicles show at the same speed limit, have been obtained from two different sources. The Guidelines for the Use of Microsimulation Software from National Highways provide distributions for 50 mph and 70 mph, while 30 mph and 60 mph have been obtained from the SPE0111 Vehicle Speed Compliance by road type and vehicle type in Great Britain from the Department for Transport (DfT).
- 4.5 40mph distributions have been obtained by interpolation between the 30 mph and the 50 mph distributions. The 30 mph, 40 mph and 50 mph distributions are shown in Appendix C.
- 4.6 It should be noted that the speed distribution for 20mph included in the models has been calculated using the journey time data on the section operating in free flow conditions.

Reduced Speed Areas

- 4.7 Reduced Speed Areas (RSAs) have been included to replicate driving behaviour, for example on curved roads and turns onto roads.
- 4.8 RSA have also been used to represent specific behaviours observed in the model area. It should be noted that additional RSAs have been coded in the PM model to represent the queuing patterns observed on the High Street. These queues are caused by parked cars which were only observed in the PM peak and these RSAs have not been included in the AM peak hour model, as the parked vehicles were not present.

Priority Rules and Conflict areas

- 4.9 Priority Rules and Conflict Areas have been coded following the industry standard approach and were calibrated to replicate the observed network conditions and driver behaviour.
- 4.10 Priority rules have also been used to represent the give way operation observed on the Norwich Road bridge, where large vehicles give way to each other as they cannot pass over the bridge at the same time.
- 4.11 It should be noted that additional priority rules were coded in the PM model to reflect the observed queuing and give way behaviour on the High Street. The floating car journey time video footage was used to observe give way behaviour, which was replicated in the model, so the queues caused by the parked cars in the PM peak are replicated.

Public Transport

4.12 Bus routes and departure times included in the modelled area were sourced from the website https://bustimes.org/. An average dwell time of ten seconds was assumed for all bus stops in the model.

Differences between AM and PM model networks

4.13 Some limited differences between the AM and PM peak hour models were coded to replicate the operation of the High Street, where the queues, delays and give way behaviour caused by the parked cars along this route were only present in the PM peak hour.

5. Model Calibration

Introduction

5.1 The purpose of the model calibration process is to ensure that the model represents existing traffic conditions. Calibration is an iterative process in which the model is revised to replicate observed traffic volumes, traffic conditions and vehicle behaviour as closely as possible.

Flow Calibration Criteria

- 5.2 This section presents the traffic flow calibration and the comparison between the modelled and observed traffic flows using the criteria provided in TAG Unit M3-1.
- 5.3 The observed and modelled turning flows were compared for each of the junctions for the AM and PM peak hours, using the TAG criteria (Unit M3.1) for flow calibration as shown in Table 1.

Table 1 – TAG Calibration Criteria

Criteria	Acceptability Guidelines			
Criteria 1 - % Flows				
a. Individual flows within 15% for flows 700-2700 vphb. Individual flows within 100 vph for flows < 700 vph				
c. Individual flows within 400 vph for flows > 2700 vph	> 85% of all cases			
Criteria 2 – GEH Criteria				
a. GEH Statistic -Individual flows: GEH < 5				

- 5.4 The differences between modelled and observed flows were calculated and the TAG criteria, both for absolute differences and for GEH statistic, were used to determine if these differences were acceptable. The GEH statistic incorporates both relative and the absolute differences and provides a better indication of the significance of differences, compared to using percentage differences which can be misleading.
- 5.5 The GEH statistic is defined as:

 $\text{GEH} = \sqrt{\frac{(M-C)^2}{(M+C)/2}}$, where M and C are different datasets to be compared.

Flow Calibration Results

- 5.6 The modelled turning flows were compared against the surveyed turning flows to calibrate the demand inputs and model assignment. The models were run twenty times using different random seeds to produce a set of average turning count results for comparison with the survey data.
- 5.7 The structure of the junctions and turning counts references within the model area can be seen in Appendix A, whilst tables indicating the GEH scores can be found in Appendix D.
- 5.8 The AM calibration results in Table 2 show the calibration results for each vehicle type. The results demonstrate that the AM peak hour flows are calibrated closely against the observed turning counts when analysed vehicle class, and all exceed the thresholds set out in TAG.

Vehicle Class	Tag Criteria	Within	Total Counts	Percentage Passing
Coro	% Counts within GEH <5	50	50	100%
Gais	% Flows within Individual Flow	50	50	100%
	% Counts within GEH <5	50	50	100%
LGV3	% Flows within Individual Flow	50	50	100%

Table 2 – AM Calibration Results - Peak Hour by Vehicle Class

Vehicle Class	Tag Criteria	Within	Total Counts	Percentage Passing
	% Counts within GEH <5	50	50	100%
ngvs	% Flows within Individual Flow	50	50	100%
Total	% Counts within GEH <5	50	50	100%
Total	% Flows within Individual Flow	50	50	100%

- 5.9 The AM calibration results in Table 3 show the calibration results for total vehicles entering the model. Although not required in TAG, explicitly matching the observed number of vehicles entering the network is a key metric to validate the capacity and delays of the microsimulation models.
- 5.10 The results demonstrate that all entry junctions into the model are calibrated closely with observed data. It has therefore been checked that the correct number of vehicles are entering the model.

From	Observed	Modelled	% Diff.
Mill Road	20	20	0.0%
B1150 / Norwich Road (EB)	637	634	-0.5%
B1354 / Buxton Road	255	249	-2.4%
Station Road	527	523	-0.8%
Great Hautbois Road	10	10	0.0%
Rectory Road	58	56	-3.4%
B1354 / Wroxham Road (WB)	285	280	-1.8%
Church Loke	8	8	0.0%

Table 4 – AM Peak Hour Calibration results - Model Entries

5.11 The calibration summary in Table 5 demonstrates that the PM peak hour model flows are also closely calibrated against the observed turning counts when analysed by vehicle class, exceeding the requirements set out in TAG.

Table 5 – PM Calibration Results - Peak Hour by Vehicle Class

Vehicle Class	Tag Criteria	Within	Total Counts	Percentage Passing
Cor	% Counts within GEH <5	50	50	100%
Car	% Flows within Individual Flow	50	50	100%
	% Counts within GEH <5	50	50	100%
LGV	% Flows within Individual Flow	50	50	100%
	% Counts within GEH <5	50	50	100%
ΠGV	% Flows within Individual Flow	50	50	100%
Total	% Counts within GEH <5	50	50	100%
TOTAL	% Flows within Individual Flow	50	50	100%

5.12 The PM calibration results in Table 6 shows the calibration results for total vehicles entering the model. The results demonstrate that all entry junctions into the model are calibrated closely with observed data. It has therefore been checked that the correct number of vehicles are entering the model.

Table 6 – PM Peak Hour Calibration Results – Model Entries

From	Observed	Modelled	% Diff.
Mill Road	21	20	-4.8%
B1150 / Norwich Road (EB)	730	715	-2.1%
B1354 / Buxton Road	200	197	-1.5%
Station Road	427	418	-2.1%

From	Observed	Modelled	% Diff.
Great Hautbois Road	36	34	-5.6%
Rectory Road	44	43	-2.3%
B1354 / Wroxham Road (WB)	305	302	-1.0%
Church Loke	4	4	0.0%

Calibration Parameters

5.13 Table 7 summarises the main calibration and specific driving behaviour parameters recommended by TAG and DfT for microsimulation models. These parameters have been included in the Coltishall Vissim model in line with the recommended guidance.

Table 7 – Microsimulation Model Parameters – TAG/DfT

Parameter	Value	Following guidance	
Headway	1s time	Yes	
Gap	1 to 4 seconds, depends on location.	Yes	
Vehicle Dynamics	Following graphs	Yes	
Reaction Time	-	-	
Desired Speed Distributions	Following graphs	Yes	
Driver Awareness	Following graphs	Yes	
Influence of signing on the approach to a diverge of the motorway lane selection	5	Yes	
Cooperative Merging	Yes, used on merging and weaving links.	Yes	
	Maximum speed difference - 6.71mph		
	Maximum collision time – 10s		
Implied Capacity at roundabouts and signal stop lines	-	-	
Min Distance between vehicles at a standstill	1.5m	Yes	

N

6. Model Validation

Introduction

- 6.1 Following the model calibration process, the VISSIM models were validated using journey time data. The vehicle travel time results from the models were compared against the surveyed journey time data to validate the queuing and delay in the model. The models were run twenty times using different random seeds to produce a set of average journey time results for comparison with the survey data.
- 6.2 The TAG M3-1 criteria for journey time validation are shown in Table 8 below.

Table 8 – TAG Validation Criteria

Criteria	Acceptability Guidelines
Nodelled times along routes should be within 15% of surveyed times (or 1 minute, if higher than 15%)	> 85% of routes

Journey Time Validation Results

6.3 Figure 6-1 shows the two journey time routes which have been defined within the model area. The average observed journey times were compared to the average modelled journey times in accordance with the criteria set out in TAG M3-1. The journey times routes were defined using the GPS position of the floating car video footage used to capture the observed journey time data.

Figure 6-1 Coltishall Routes

6.4 Table 9 and Table 10 show the individual performance of each of the defined journey time routes for all vehicles, all of which pass the TAG criteria.
Table 9 – AM Journey Time Validation

ID Route Name Observed Modelled % Difference Validation

1	JT1_SB	58	62	7%	Yes
2	JT1_NB	75	70	-6%	Yes
3	JT2_EB	174	175	1%	Yes
4	JT2_WB	154	165	7%	Yes

Table 10 – PM Journey Time Validation

ID	Route Name	Observed	Modelled	% Difference	Validation
1	JT1_SB	102	102	0%	Yes
2	JT1_NB	96	88	-8%	Yes
3	JT2_EB	187	176	-6%	Yes
4	JT2_WB	151	164	9%	Yes

6.5 Figure 6-2 to Figure 6-7 show the cumulative journey time profiles of these routes with the maps and observed data for both peaks. It can be seen that the models closely replicate the profile of delay along the modelled routes.

Figure 6-2 – Route 1 SB Map

Figure 6-5 – Route 2 EB Map

Figure 6-6 – Route 2 EB journey time validation profiles

Figure 6-7 – Route 2 WB journey time validation profiles

Queue Calibration

- 6.6 In addition to the journey time validation of the model, TAG recommends a review of the representation of existing queues in the model. Although journey times provide a more accurate representation of the existing delays, the visual comparison of the queue patterns in the area provides further reassurance that the model represents the operation of the network.
- 6.7 Two main sources have been used to define the main queues of the model: the floating car footage of driving behaviour in Coltishall and the typical travel speed information taken from Google Maps.

AM Peak Hour

6.8 The main queue in the AM period occurs on the B1150 as traffic approaches the petrol station from the southwest. This queueing behaviour can be seen in Figure 6-8, which was captured from floating car footage of Route 2, this was a moving queue caused by right turning vehicles waiting to turn into the B1150 northwards.

Figure 6-8 – Floating car footage of AM queuing on B1150

6.9 Figure 6-9 shows the typical traffic conditions according to Google Maps on a Tuesday at 08:30. Figure 6-10 shows the peak hour average speed plot from the AM model, where it can be observed that a similar queue is present.

Figure 9 - Typical queues from Google traffic on a Wednesday, 08:30

Figure 10 – AM Peak Hour Speed Plot

PM Peak Hour

6.10 The main queue in PM period occurs on the High Street, where parked cars prevent the free flow of traffic in both directions simultaneously. The presence of parked cars can be seen in Figure 6-11, taken from a Google StreetView. This image shows that cars are parked on both sides of the street, which limits the road space available for vehicles to pass. Figure 6-12 is a still taken from the floating car footage of the Route 1 southbound journey in the PM period which shows how parked cars impede the free flow of traffic in both directions.

Figure 6-11-1 Parked cars on High Street

Figure 6-12 PM queuing on High Street, from floating car footage

6.11 Figure 6-13 shows the typical traffic conditions according to Google Maps on a Tuesday at 16:40, whilst Figure 6-14 shows the modelled queues during the PM peak, where this queuing is replicated.

Figure 6-13 – Google traffic view captured on a Monday at 16:40

Figure 6-14 – PM peak hour Speed Plot

Model Variability

- 6.12 Microsimulation models are run several times with different random seeds to obtain a statistically representative result. This approach replicates daily variability, since each run has different arrival profiles which results in a different chain of events. A representative average of the results is the obtained/ presented.
- 6.13 The survey videos show that the queues on the High Street in the PM period can be highly variable since they can appear and disappear in short periods of time.
- 6.14 A variability analysis of the modelling journey times results has been undertaken in this section. Figure 6-15 shows the modelled journey times for Route 1 SB in the PM period for all of the model runs, whilst Figure 6-16 shows the modelled journey times for Route 1 NB in the PM period for all the model runs.

6.15 As can be seen in these graphs, the modelled journey times in the PM peak are variable, particularly in the southbound direction. This variability is caused by parked cars on the High Street and the subsequent give way behaviour and queuing. This phenomenon has been replicated in the model, replicating the variability seen in the surveys.

7. Conclusion

- 7.1 Coltishall is a village located on the B1150 between Norwich and North Walsham and the road network is therefore busy at peak times. In the AM period there is a small amount of congestion on the eastbound approach to the petrol station due to the vehicles waiting to turn right into B1150 northwards, as explained in paragraph 6.8, whilst in the PM period parked cars on the High Street were seen to cause a significant amount of queuing, particularly in the southbound direction.
- 7.2 The base models have been calibrated and validated against the observed data in line with the required criteria. The calibration/validation results exceed the requirements for turning counts and journey times and the models are therefore closely aligned with observed data. The models also replicate observed queueing patterns well. The models are therefore validated to industry standard guidelines.
- 7.3 It is considered the base models provide a close representation of the queues and delays in the network, as well as the observed driving behaviour in the area, and are fit for the purpose of testing future traffic levels/ patterns or potential changes to the road network.

Appendix A MCTC Turning Counts

AM – All vehicles

AM – Cars

AM – HGV

AM – LGV

PM – All Vehicles

PM – Cars

PM – HGV

PM – LGV

Appendix B Consistency Checks

Fr	om	Traffic	Flow	1	0	Traffic	Flow	Differ	ence	GE	H
Site	Arm	CAR	LGV	Site	Arm	CAR	LGV	CAR	LGV	CAR	LGV
1	А	3398	714	5	В	3390	701	8	13	0.1	0.5
5	В	3410	809	1	А	3427	788	-17	21	0.3	0.7
5	А	3390	701	2	D	3312	659	78	42	1.3	1.6
2	D	3403	808	5	A	3410	809	-7	-1	0.1	0.0
2	А	2384	474	3	В	2339	472	45	2	0.9	0.1
3	В	2343	549	2	А	2348	558	-5	-9	0.1	0.4
2	В	1383	288	4	D	1405	266	-22	22	0.6	1.3
4	D	1481	334	2	В	1556	357	-75	-23	1.9	1.2

Appendix C Desired Speed Distributions

Description	Posted Limit		Normal Distribut	ibutions (mph)				
		LV	S	ŀ	lVs			
	-	Lower	Upper	Lower	Upper			
DfT's Motorways	70	50	89	50	89			
DfT's Dual Carriageways	70	58	80	48	80			
DfT's Single Carriageways	60	20	70	20	69			

Appendix D Turning Count Calibration Tables

AM – All vehicles

VISSIM Node	101		Vehicle Type	Total										
		Nede						Flow Peak	Гime	Differer	nce		GEH	
Junction Name	MCC Site	Node No.	From Arm	FromLink	To Arm	ToLink	MCC ID	Observed	Modelled	Value	%	Value	<5	Individual Flows
Rectory Road roundabout	1	101	A	38	А	3	1AA	0	2	2	-	2	Υ	OK
Rectory Road roundabout	1	101	A	38	В	19	1AB	7	7	0	0%	0	Υ	OK
Rectory Road roundabout	1	101	A	38	С	22	1AC	635	605	-30	-5%	1	Υ	OK
Rectory Road roundabout	1	101	A	38	D	18	1AD	104	101	-3	-3%	0	Υ	OK
Rectory Road roundabout	1	101	В	20	А	3	1BA	10	10	0	0%	0	Y	OK
Rectory Road roundabout	1	101	В	20	В	19	1BB	0	0	0	-	0	Υ	OK
Rectory Road roundabout	1	101	В	20	С	22	1BC	10	10	0	0%	0	Y	OK
Rectory Road roundabout	1	101	В	20	D	18	1BD	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	С	1	А	3	1CA	548	547	-1	0%	0	Y	OK
Rectory Road roundabout	1	101	С	1	В	19	1CB	7	7	0	0%	0	Y	OK
Rectory Road roundabout	1	101	С	1	С	22	1CC	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	С	1	D	18	1CD	82	80	-2	-2%	0	Y	OK
Rectory Road roundabout	1	101	D	17	Α	3	1DA	146	142	-4	-3%	0	Y	OK
Rectory Road roundabout	1	101	D	17	В	19	1DB	3	3	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	С	22	1DC	106	104	-2	-2%	0	Υ	OK
Rectory Road roundabout	1	101	D	17	D	18	1DD	0	0	0	-	0	Υ	OK

VISSIM Node

Vehicle Type Total

102

		Nodo					MCC	Flow Pea	ak Time	Diffe	rence		GEH	
Junction Name	MCC Site	Node No.	From Arm	FromLink	To Arm	ToLink	ID	Observed	Modelled	Value	%	Value	<5	Individual Flows
Petrol Station Gyratory	2	102	А	10011	А	15	2AA	0	0	0	-	0	Y	OK
Petrol Station Gyratory	2	102	А	10011	В	10	2AB	52	51	-1	-2%	0	Y	OK
Petrol Station Gyratory	2	102	А	34	D	12	2AD	483	479	-4	-1%	0	Y	OK
Petrol Station Gyratory	2	102	В	11	А	15	2BA	36	36	0	0%	0	Y	OK
Petrol Station Gyratory	2	102	В	11	В	10	2BB	0	0	0	-	0	Y	OK
Petrol Station Gyratory	2	102	В	11	D	12	2BD	223	229	6	3%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	А	15	2DA	384	382	-2	-1%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	В	10	2DB	331	332	1	0%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	D	12	2DD	0	1	1	-	1	Y	OK

VISSIM Node 103 Vehicle Type Total

Junction Name	MCC Site	From Arm	FromLink	To Arm	ToLink	Flow Peak Time	Difference	GEH	

		Node					MCC							Individual
		No.					ID	Observed	Modelled	Value	%	Value	<5	Flows
Great Hautbois Road / Station Road	3	103	А	4	А	33	3AA	0	0	0	-	0	Υ	OK
Great Hautbois Road / Station Road	3	103	А	4	В	34	3AB	526	522	-4	-1%	0	Y	OK
Great Hautbois Road / Station Road	3	103	А	4	С	31	3AC	1	1	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	А	33	3BA	415	403	-12	-3%	1	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	В	34	3BB	0	0	0	-	0	Υ	OK
Great Hautbois Road / Station Road	3	103	В	15	С	31	3BC	15	15	0	0%	0	Υ	OK
Great Hautbois Road / Station Road	3	103	С	32	А	33	3CA	2	2	0	0%	0	Υ	OK
Great Hautbois Road / Station Road	3	103	С	32	В	34	3CB	8	8	0	0%	0	Υ	OK
Great Hautbois Road / Station Road	3	103	С	32	С	31	3CC	0	0	0	-	0	Y	OK

104

Vehicle Type Total

		Nodo					MCC	Flow Pea	ık Time	Differ	ence		GEH	
Junction Name	MCC Site	Noue No.	From Arm	FromLink	To Arm	ToLink	ID						-	Individual
								Observed	Modelled	Value	%	Value	<5	Flows
Church Loke	4	104	A	24	А	23	4AA	0	0	0	-	0	Y	OK
Church Loke	4	104	А	24	В	29	4AB	24	23	-1	-4%	0	Y	OK
Church Loke	4	104	А	24	С	27	4AC	0	0	0	-	0	Y	OK
Church Loke	4	104	A	24	D	26	4AD	34	33	-1	-3%	0	Y	OK
Church Loke	4	104	В	6	А	23	4BA	51	49	-2	-4%	0	Y	OK
Church Loke	4	104	В	6	В	29	4BB	0	0	0	-	0	Y	OK
Church Loke	4	104	В	6	С	27	4BC	2	2	0	0%	0	Y	OK
Church Loke	4	104	В	6	D	26	4BD	232	229	-3	-1%	0	Y	OK
Church Loke	4	104	С	28	А	23	4CA	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	В	29	4CB	4	4	0	0%	0	Y	OK
Church Loke	4	104	С	28	С	27	4CC	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	D	26	4CD	4	4	0	0%	0	Y	OK
Church Loke	4	104	D	10	А	23	4DA	58	59	1	2%	0	Y	OK
Church Loke	4	104	D	10	В	29	4DB	304	315	11	4%	1	Y	OK
Church Loke	4	104	D	10	С	27	4DC	9	9	0	0%	0	Y	OK
Church Loke	4	104	D	10	D	26	4DD	0	0	0	-	0	Y	OK

VISSIM Node

105

Vehicle Type Total

	Node						MCC	Flow Pea	ak Time	Diffe	rence		GEH	
Junction Name	MCC Site	Node	From Arm	FromLink	To Arm	ToLink								Individual
		NO.						Observed	Modelled	Value	%	Value	<5	Flows
B1150 Bridge	5	105	A	12	А	37	5AA	0	0	0	-	0	Y	OK
B1150 Bridge	5	105	A	12	В	12	5AB	745	708	-37	-5%	1	Y	OK
B1150 Bridge	5	105	В	37	А	37	5BA	721	713	-8	-1%	0	Y	OK
B1150 Bridge	5	105	В	37	В	12	5BB	0	0	0	-	0	Y	OK

AM – Cars

VISSIM Node	101	Vehicle Type	Car							
Junction Name		From Arm	FromLink	To Arm	ToLink	MCC ID	Flow Peak Time	Difference	GEH	

	MCC	Node												Individual
	Site	No.						Observed	Modelled	Value	%	Value	<5	Flows
Rectory Road roundabout	1	101	А	38	А	3	1AA	0	1	1	-	1	Y	OK
Rectory Road roundabout	1	101	А	38	В	19	1AB	5	5	0	0%	0	Y	OK
Rectory Road roundabout	1	101	А	38	С	22	1AC	503	488	-15	-3%	1	Y	OK
Rectory Road roundabout	1	101	А	38	D	18	1AD	76	75	-1	-1%	0	Y	OK
Rectory Road roundabout	1	101	В	20	А	3	1BA	9	9	0	0%	0	Y	OK
Rectory Road roundabout	1	101	В	20	В	19	1BB	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	В	20	С	22	1BC	9	9	0	0%	0	Y	OK
Rectory Road roundabout	1	101	В	20	D	18	1BD	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	С	1	А	3	1CA	406	407	1	0%	0	Y	OK
Rectory Road roundabout	1	101	С	1	В	19	1CB	4	4	0	0%	0	Y	OK
Rectory Road roundabout	1	101	С	1	С	22	1CC	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	С	1	D	18	1CD	39	39	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	А	3	1DA	114	111	-3	-3%	0	Y	OK
Rectory Road roundabout	1	101	D	17	В	19	1DB	2	2	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	С	22	1DC	74	72	-2	-3%	0	Y	OK
Rectory Road roundabout	1	101	D	17	D	18	1DD	0	0	0	-	0	Y	OK

102

Vehicle Type Car

	MCC	Nodo						Flow Pea	ak Time	Diffe	rence		GEH	
Junction Name	Sito	No	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Site	NO.						Observed	Modelled	Value	%	Value	<5	Flows
Petrol Station Gyratory	2	102	A	10011	А	15	2AA	0	0	0	-	0	Y	OK
Petrol Station Gyratory	2	102	A	10011	В	10	2AB	38	37	-1	-3%	0	Y	OK
Petrol Station Gyratory	2	102	А	34	D	12	2AD	386	384	-2	-1%	0	Y	OK
Petrol Station Gyratory	2	102	В	11	А	15	2BA	25	25	0	0%	0	Y	OK
Petrol Station Gyratory	2	102	В	11	В	10	2BB	0	0	0	-	0	Y	OK
Petrol Station Gyratory	2	102	В	11	D	12	2BD	177	183	6	3%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	А	15	2DA	279	279	0	0%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	В	10	2DB	258	259	1	0%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	D	12	2DD	0	1	1	-	1	Y	OK

VISSIM Node

103

Vehicle Type Car

	MCC	Nodo						Flow Pe	ak Time	Diffe	rence		GEH	
Junction Name	Sito	Node	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Sile	NO.						Observed	Modelled	Value	%	Value	<5	Flows
Great Hautbois Road / Station Road	3	103	A	4	А	33	3AA	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	А	4	В	34	3AB	412	414	2	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	А	4	С	31	3AC	1	1	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	А	33	3BA	298	291	-7	-2%	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	В	34	3BB	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	С	31	3BC	13	13	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	А	33	3CA	1	1	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	В	34	3CB	7	7	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	С	31	3CC	0	0	0	-	0	Y	OK

VISSIM Node 104 Vehicle Type Car

	MOO	Nede						Flow Pe	ak Time	Diffe	rence		GEH	
Junction Name	Sito	Node	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Site	NO.						Observed	Modelled	Value	%	Value	<5	Flows
Church Loke	4	104	A	24	A	23	4AA	0	0	0	-	0	Y	OK
Church Loke	4	104	А	24	В	29	4AB	19	19	0	0%	0	Y	OK
Church Loke	4	104	А	24	С	27	4AC	0	0	0	-	0	Y	OK
Church Loke	4	104	А	24	D	26	4AD	28	27	-1	-4%	0	Y	OK
Church Loke	4	104	В	6	А	23	4BA	47	47	0	0%	0	Y	OK
Church Loke	4	104	В	6	В	29	4BB	0	0	0	-	0	Y	OK
Church Loke	4	104	В	6	С	27	4BC	1	1	0	0%	0	Y	OK
Church Loke	4	104	В	6	D	26	4BD	182	181	-1	-1%	0	Y	OK
Church Loke	4	104	С	28	A	23	4CA	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	В	29	4CB	1	1	0	0%	0	Y	OK
Church Loke	4	104	С	28	С	27	4CC	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	D	26	4CD	1	1	0	0%	0	Y	OK
Church Loke	4	104	D	10	А	23	4DA	53	54	1	2%	0	Y	OK
Church Loke	4	104	D	10	В	29	4DB	233	237	4	2%	0	Y	OK
Church Loke	4	104	D	10	С	27	4DC	4	4	0	0%	0	Y	OK
Church Loke	4	104	D	10	D	26	4DD	0	0	0	-	0	Y	OK

VISSIM Node

105

Vehicle Type Car

	MCC	Mada						Flow Pea	ak Time	Diffe	rence		GEH	
Junction Name	Sito	Node	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Sile	NO.						Observed	Modelled	Value	%	Value	<5	Flows
B1150 Bridge	5	105	A	12	А	37	5AA	0	0	0	-	0	Y	OK
B1150 Bridge	5	105	A	12	В	12	5AB	583	567	-16	-3%	1	Y	OK
B1150 Bridge	5	105	В	37	А	37	5BA	542	538	-4	-1%	0	Y	OK
B1150 Bridge	5	105	В	37	В	12	5BB	0	0	0	-	0	Y	OK

AM – LGV

VISSIM Node

101

Vehicle Type LGV

	MCC	Nodo						Flow P	eak Time	Diffe	rence		GEH	
Junction Name	Sito	No	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	one	NO.						Observed	Modelled	Value	%	Value	<5	Flows
Rectory Road roundabout	1	101	A	38	А	3	1AA	0	1	1	-	1	Y	OK
Rectory Road roundabout	1	101	A	38	В	19	1AB	2	2	0	0%	0	Y	OK
Rectory Road roundabout	1	101	А	38	С	22	1AC	108	100	-8	-7%	1	Y	OK
Rectory Road roundabout	1	101	A	38	D	18	1AD	26	25	-1	-4%	0	Y	OK
Rectory Road roundabout	1	101	В	20	А	3	1BA	1	1	0	0%	0	Y	OK
Rectory Road roundabout	1	101	В	20	В	19	1BB	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	В	20	С	22	1BC	1	1	0	0%	0	Y	OK
Rectory Road roundabout	1	101	В	20	D	18	1BD	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	С	1	А	3	1CA	126	126	0	0%	0	Y	OK
Rectory Road roundabout	1	101	С	1	В	19	1CB	3	3	0	0%	0	Y	OK

Rectory Road roundabout	1	101	С	1	С	22	1CC	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	С	1	D	18	1CD	32	32	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	А	3	1DA	26	26	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	В	19	1DB	1	1	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	С	22	1DC	23	24	1	4%	0	Y	OK
Rectory Road roundabout	1	101	D	17	D	18	1DD	0	0	0	-	0	Y	OK

102

Vehicle Type LGV

	MCC	Nada						Flow Peak	Time	Difference	e		GEH	
Junction Name	Site	Node	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Sile	NO.						Observed	Modelled	Value	%	Value	<5	Flows
Petrol Station Gyratory	2	102	А	10011	А	15	2AA	0	0	0	-	0	Y	OK
Petrol Station Gyratory	2	102	А	10011	В	10	2AB	12	12	0	0%	0	Y	OK
Petrol Station Gyratory	2	102	А	34	D	12	2AD	81	84	3	4%	0	Y	OK
Petrol Station Gyratory	2	102	В	11	А	15	2BA	8	8	0	0%	0	Y	OK
Petrol Station Gyratory	2	102	В	11	В	10	2BB	0	0	0	-	0	Y	OK
Petrol Station Gyratory	2	102	В	11	D	12	2BD	38	40	2	5%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	А	15	2DA	91	92	1	1%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	В	10	2DB	65	65	0	0%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	D	12	2DD	0	0	0	-	0	Y	OK

VISSIM Node

103

Vehicle Type LGV

	MCC	Nede						Flow P	eak Time	Differ	ence		GEH	
Junction Name	Sito	Node	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Sile	NO.						Observed	Modelled	Value	%	Value	<5	Flows
Great Hautbois Road / Station Road	3	103	А	4	А	33	3AA	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	А	4	В	34	3AB	95	95	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	А	4	С	31	3AC	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	А	33	3BA	98	98	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	В	34	3BB	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	С	31	3BC	2	2	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	А	33	3CA	1	1	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	В	34	3CB	1	1	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	С	31	3CC	0	0	0	-	0	Y	OK

VISSIM Node

Ve

104

Vehicle Type LGV

	MCC	Nodo						Flow P	eak Time	Diffe	rence		GEH	
Junction Name	Site	Node No.	From Arm	FromLink	To Arm	ToLink	MCC ID	Observed	Modelled	Value	%	Value	<5	Individual Flows
Church Loke	4	104	A	24	А	23	4AA	0	0	0	-	0	Y	ОК
Church Loke	4	104	A	24	В	29	4AB	4	4	0	0%	0	Y	OK
Church Loke	4	104	A	24	С	27	4AC	0	0	0	-	0	Y	OK
Church Loke	4	104	A	24	D	26	4AD	3	3	0	0%	0	Y	OK
Church Loke	4	104	В	6	А	23	4BA	3	3	0	0%	0	Y	OK
Church Loke	4	104	В	6	В	29	4BB	0	0	0	-	0	Y	OK
Church Loke	4	104	В	6	С	27	4BC	0	0	0	-	0	Y	OK

Church Loke	4	104	В	6	D	26	4BD	43	43	0	0%	0	Y	ОК
Church Loke	4	104	С	28	А	23	4CA	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	В	29	4CB	3	3	0	0%	0	Y	OK
Church Loke	4	104	С	28	С	27	4CC	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	D	26	4CD	2	2	0	0%	0	Y	OK
Church Loke	4	104	D	10	А	23	4DA	3	3	0	0%	0	Y	OK
Church Loke	4	104	D	10	В	29	4DB	63	70	7	11%	1	Y	OK
Church Loke	4	104	D	10	С	27	4DC	5	5	0	0%	0	Y	OK
Church Loke	4	104	D	10	D	26	4DD	0	0	0	-	0	Y	OK

105

Vehicle Type LGV

	MCC	Nodo						Flow P	eak Time	Diffe	rence		GEH	
Junction Name	Sito	No	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Sile	NO.						Observed	Modelled	Value	%	Value	<5	Flows
B1150 Bridge	5	105	A	12	А	37	5AA	0	0	0	-	0	Y	OK
B1150 Bridge	5	105	A	12	В	12	5AB	134	124	-10	-7%	1	Y	OK
B1150 Bridge	5	105	В	37	А	37	5BA	157	157	0	0%	0	Y	OK
B1150 Bridge	5	105	В	37	В	12	5BB	0	0	0	-	0	Y	OK

AM – HGV

VISSIM Node

101

Vehicle Type HGV

	MCC	Nada						Flow P	eak Time	Diffe	rence		GEH	
Junction Name	Sito	Noue	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	One	NO.						Observed	Modelled	Value	%	Value	<5	Flows
Rectory Road roundabout	1	101	A	38	А	3	1AA	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	A	38	В	19	1AB	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	A	38	С	22	1AC	18	16	-2	-11%	0	Y	OK
Rectory Road roundabout	1	101	А	38	D	18	1AD	2	2	0	0%	0	Y	OK
Rectory Road roundabout	1	101	В	20	А	3	1BA	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	В	20	В	19	1BB	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	В	20	С	22	1BC	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	В	20	D	18	1BD	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	С	1	А	3	1CA	12	12	0	0%	0	Y	OK
Rectory Road roundabout	1	101	С	1	В	19	1CB	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	С	1	С	22	1CC	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	С	1	D	18	1CD	10	9	-1	-10%	0	Y	OK
Rectory Road roundabout	1	101	D	17	А	3	1DA	5	5	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	В	19	1DB	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	D	17	С	22	1DC	8	8	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	D	18	1DD	0	0	0	-	0	Y	OK

VISSIM Node

102

Vehicle Type HGV

	MCC	Nodo						Flow P	eak Time	Diffe	rence		GEH	
Junction Name	Sito	Noue	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Site	NO.						Observed	Modelled	Value	%	Value	<5	Flows

Petrol Station Gyratory	2	102	А	10011	А	15	2AA	0	0	0	-	0	Y	OK
Petrol Station Gyratory	2	102	А	10011	В	10	2AB	2	2	0	0%	0	Y	OK
Petrol Station Gyratory	2	102	А	34	D	12	2AD	11	11	0	0%	0	Y	OK
Petrol Station Gyratory	2	102	В	11	А	15	2BA	3	3	0	0%	0	Y	OK
Petrol Station Gyratory	2	102	В	11	В	10	2BB	0	0	0	-	0	Y	OK
Petrol Station Gyratory	2	102	В	11	D	12	2BD	5	5	0	0%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	А	15	2DA	9	9	0	0%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	В	10	2DB	7	8	1	14%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	D	12	2DD	0	0	0	-	0	Y	OK

103

Vehicle Type HGV

	MCC	Nodo						Flow P	eak Time	Diffe	rence		GEH	
Junction Name	Site	No	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
		NO.						Observed	Modelled	Value	%	Value	<5	Flows
Great Hautbois Road / Station Road	3	103	А	4	А	33	3AA	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	А	4	В	34	3AB	13	13	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	А	4	С	31	3AC	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	А	33	3BA	14	12	-2	-14%	1	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	В	34	3BB	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	С	31	3BC	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	А	33	3CA	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	В	34	3CB	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	С	31	3CC	0	0	0	-	0	Y	OK

VISSIM Node

104

Vehicle Type HGV

	MCC	Nodo						Flow P	eak Time	Diffe	rence		GEH	
Junction Name	Sito	No	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Sile	NO.						Observed	Modelled	Value	%	Value	<5	Flows
Church Loke	4	104	A	24	А	23	4AA	0	0	0	-	0	Y	OK
Church Loke	4	104	А	24	В	29	4AB	0	0	0	-	0	Y	OK
Church Loke	4	104	A	24	С	27	4AC	0	0	0	-	0	Y	OK
Church Loke	4	104	A	24	D	26	4AD	2	2	0	0%	0	Y	OK
Church Loke	4	104	В	6	А	23	4BA	0	0	0	-	0	Y	OK
Church Loke	4	104	В	6	В	29	4BB	0	0	0	-	0	Y	OK
Church Loke	4	104	В	6	С	27	4BC	1	1	0	0%	0	Y	OK
Church Loke	4	104	В	6	D	26	4BD	5	5	0	0%	0	Y	OK
Church Loke	4	104	С	28	А	23	4CA	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	В	29	4CB	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	С	27	4CC	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	D	26	4CD	1	1	0	0%	0	Y	OK
Church Loke	4	104	D	10	А	23	4DA	1	1	0	0%	0	Y	OK
Church Loke	4	104	D	10	В	29	4DB	8	8	0	0%	0	Y	OK
Church Loke	4	104	D	10	С	27	4DC	0	0	0	-	0	Y	OK
Church Loke	4	104	D	10	D	26	4DD	0	0	0	-	0	Y	OK

VISSIM Node

105

Vehicle Type HGV

	MCC	Nodo						Flow P	eak Time	Diffe	rence		GEH	
Junction Name	Sito	Node	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Sile	NO.						Observed	Modelled	Value	%	Value	<5	Flows
B1150 Bridge	5	105	A	12	А	37	5AA	0	0	0	-	0	Y	OK
B1150 Bridge	5	105	A	12	В	12	5AB	19	16	-3	-16%	1	Y	OK
B1150 Bridge	5	105	В	37	А	37	5BA	16	17	1	6%	0	Y	OK
B1150 Bridge	5	105	В	37	В	12	5BB	0	0	0	-	0	Y	OK

PM – All Vehicles

VISSIM Node

101

Vehicle Type Total

		Nede						Flow Pea	ak Time	Differ	ence		GEH	
Junction Name	MCC Site	Node	From Arm	FromLink	To Arm	ToLink	MCC							Individual
							ID	Observed	Modelled	Value	%	Value	<5	Flows
Rectory Road roundabout	1	101	A	38	А	3	1AA	1	2	1	100%	1	Y	OK
Rectory Road roundabout	1	101	А	38	В	19	1AB	11	9	-2	-18%	1	Υ	OK
Rectory Road roundabout	1	101	А	38	С	22	1AC	561	525	-36	-6%	2	Υ	OK
Rectory Road roundabout	1	101	А	38	D	18	1AD	151	141	-10	-7%	1	Υ	OK
Rectory Road roundabout	1	101	В	20	А	3	1BA	8	8	0	0%	0	Y	OK
Rectory Road roundabout	1	101	В	20	В	19	1BB	0	0	0	-	0	Υ	OK
Rectory Road roundabout	1	101	В	20	С	22	1BC	10	10	0	0%	0	Υ	OK
Rectory Road roundabout	1	101	В	20	D	18	1BD	3	2	-1	-33%	1	Υ	OK
Rectory Road roundabout	1	101	С	1	А	3	1CA	628	616	-12	-2%	0	Y	OK
Rectory Road roundabout	1	101	С	1	В	19	1CB	2	2	0	0%	0	Y	OK
Rectory Road roundabout	1	101	С	1	С	22	1CC	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	С	1	D	18	1CD	100	97	-3	-3%	0	Υ	OK
Rectory Road roundabout	1	101	D	17	А	3	1DA	123	120	-3	-2%	0	Y	OK
Rectory Road roundabout	1	101	D	17	В	19	1DB	1	1	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	С	22	1DC	76	76	0	0%	0	Υ	OK
Rectory Road roundabout	1	101	D	17	D	18	1DD	0	0	0	-	0	Υ	OK

VISSIM Node

102

Vehicle Type Total

		Nodo					MCC	Flow Pea	ak Time	Diffe	rence		GEH	
Junction Name	MCC Site	Noue	From Arm	FromLink	To Arm	ToLink								Individual
		NO.						Observed	Modelled	Value	%	Value	<5	Flows
Petrol Station Gyratory	2	102	А	10011	А	15	2AA	0	0	0	-	0	Y	OK
Petrol Station Gyratory	2	102	А	10011	В	10	2AB	41	40	-1	-2%	0	Y	OK
Petrol Station Gyratory	2	102	A	34	D	12	2AD	408	402	-6	-1%	0	Y	OK
Petrol Station Gyratory	2	102	В	11	А	15	2BA	41	41	0	0%	0	Y	OK
Petrol Station Gyratory	2	102	В	11	В	10	2BB	0	0	0	-	0	Y	OK
Petrol Station Gyratory	2	102	В	11	D	12	2BD	254	263	9	4%	1	Y	OK
Petrol Station Gyratory	2	102	D	37	А	15	2DA	493	484	-9	-2%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	В	10	2DB	261	254	-7	-3%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	D	12	2DD	0	3	3	-	2	Y	OK

VISSIM Node

103

Vehicle Type Total

		Nodo					MCC	Flow Pea	ak Time	Diffe	rence		GEH	
Junction Name	MCC Site	Node No.	From Arm	FromLink	To Arm	ToLink	ID	Observed	Modelled	Value	%	Value	<5	Individual Flows
Great Hautbois Road / Station Road	3	103	A	4	A	33	3AA	0	0	0	-	0	Y	ОК
Great Hautbois Road / Station Road	3	103	Α	4	В	34	3AB	426	417	-9	-2%	0	Y	OK
Great Hautbois Road / Station Road	3	103	Α	4	С	31	3AC	1	1	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	А	33	3BA	523	506	-17	-3%	1	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	В	34	3BB	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	С	31	3BC	19	18	-1	-5%	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	А	33	3CA	9	8	-1	-11%	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	В	34	3CB	27	26	-1	-4%	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	С	31	3CC	0	0	0	-	0	Y	OK

104

Vehicle Type Total

		Nodo					MCC	Flow Pea	ak Time	Differ	rence		GEH	
Junction Name	MCC Site	No	From Arm	FromLink	To Arm	ToLink								Individual
		NO.						Observed	Modelled	Value	%	Value	<5	Flows
Church Loke	4	104	A	24	А	23	4AA	0	0	0	-	0	Υ	OK
Church Loke	4	104	A	24	В	29	4AB	16	16	0	0%	0	Υ	OK
Church Loke	4	104	A	24	С	27	4AC	0	0	0	-	0	Y	OK
Church Loke	4	104	A	24	D	26	4AD	28	27	-1	-4%	0	Y	OK
Church Loke	4	104	В	6	А	23	4BA	24	25	1	4%	0	Y	OK
Church Loke	4	104	В	6	В	29	4BB	0	0	0	-	0	Y	OK
Church Loke	4	104	В	6	С	27	4BC	0	0	0	-	0	Y	OK
Church Loke	4	104	В	6	D	26	4BD	281	277	-4	-1%	0	Υ	OK
Church Loke	4	104	С	28	А	23	4CA	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	В	29	4CB	2	2	0	0%	0	Υ	OK
Church Loke	4	104	С	28	С	27	4CC	0	0	0	-	0	Υ	OK
Church Loke	4	104	С	28	D	26	4CD	2	2	0	0%	0	Υ	OK
Church Loke	4	104	D	10	А	23	4DA	37	35	-2	-5%	0	Υ	OK
Church Loke	4	104	D	10	В	29	4DB	260	257	-3	-1%	0	Υ	OK
Church Loke	4	104	D	10	С	27	4DC	1	1	0	0%	0	Υ	OK
Church Loke	4	104	D	10	D	26	4DD	0	0	0	-	0	Υ	OK

VISSIM Node

105

Vehicle Type Total

		Mada					MOO	Flow Pea	ak Time	Diffe	rence		GEH	
Junction Name	MCC Site	Node No.	From Arm	FromLink	To Arm	ToLink	ID	Observed	Modelled	Value	%	Value	<5	Individual Flows
B1150 Bridge	5	105	A	12	А	37	5AA	0	0	0	-	0	Y	OK
B1150 Bridge	5	105	A	12	В	12	5AB	716	668	-48	-7%	2	Y	OK
B1150 Bridge	5	105	В	37	А	37	5BA	756	739	-17	-2%	1	Y	OK
B1150 Bridge	5	105	В	37	В	12	5BB	0	0	0	-	0	Y	OK

PM – Cars

VISSIM Node

101

Vehicle Type Car

	MCC	Nodo						Flow Pe	ak Time	Differ	ence		GEH	
Junction Name	Site	No	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Olle	NO.						Observed	Modelled	Value	%	Value	<5	Flows
Rectory Road roundabout	1	101	А	38	А	3	1AA	1	1	0	0%	0	Y	OK
Rectory Road roundabout	1	101	A	38	В	19	1AB	11	9	-2	-18%	1	Y	OK
Rectory Road roundabout	1	101	A	38	С	22	1AC	448	418	-30	-7%	1	Y	OK
Rectory Road roundabout	1	101	A	38	D	18	1AD	120	112	-8	-7%	1	Y	OK
Rectory Road roundabout	1	101	В	20	А	3	1BA	7	8	1	14%	0	Y	OK
Rectory Road roundabout	1	101	В	20	В	19	1BB	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	В	20	С	22	1BC	10	10	0	0%	0	Y	OK
Rectory Road roundabout	1	101	В	20	D	18	1BD	3	2	-1	-33%	1	Y	OK
Rectory Road roundabout	1	101	С	1	А	3	1CA	506	504	-2	0%	0	Y	OK
Rectory Road roundabout	1	101	С	1	В	19	1CB	2	2	0	0%	0	Y	OK
Rectory Road roundabout	1	101	С	1	С	22	1CC	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	С	1	D	18	1CD	66	66	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	А	3	1DA	97	97	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	В	19	1DB	1	1	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	С	22	1DC	56	56	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	D	18	1DD	0	0	0	-	0	Υ	OK

102

Vehicle Type Car

	MCC	Nodo						Flow Peak	Time	Differenc	е		GEH	
Junction Name	Sito	Node	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Sile	NO.						Observed	Modelled	Value	%	Value	<5	Flows
Petrol Station Gyratory	2	102	А	10011	А	15	2AA	0	0	0	-	0	Y	OK
Petrol Station Gyratory	2	102	А	10011	В	10	2AB	38	38	0	0%	0	Y	OK
Petrol Station Gyratory	2	102	А	34	D	12	2AD	328	326	-2	-1%	0	Y	OK
Petrol Station Gyratory	2	102	В	11	А	15	2BA	27	29	2	7%	0	Y	OK
Petrol Station Gyratory	2	102	В	11	В	10	2BB	0	0	0	-	0	Y	OK
Petrol Station Gyratory	2	102	В	11	D	12	2BD	202	220	18	9%	1	Y	OK
Petrol Station Gyratory	2	102	D	37	А	15	2DA	395	397	2	1%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	В	10	2DB	205	207	2	1%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	D	12	2DD	0	1	1	-	1	Y	OK

VISSIM Node

103

Vehicle Type Car

	MCC	Nada						Flow Pe	ak Time	Diffe	rence		GEH	
Junction Name	Sito	Node	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Sile	NO.						Observed	Modelled	Value	%	Value	<5	Flows
Great Hautbois Road / Station Road	3	103	А	4	А	33	3AA	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	А	4	В	34	3AB	344	340	-4	-1%	0	Y	OK
Great Hautbois Road / Station Road	3	103	A	4	С	31	3AC	1	1	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	А	33	3BA	411	409	-2	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	В	34	3BB	0	0	0	-	0	Y	ОК
Great Hautbois Road / Station Road	3	103	В	15	С	31	3BC	17	17	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	А	33	3CA	7	7	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	В	34	3CB	26	26	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	С	31	3CC	0	0	0	-	0	Y	OK

VISSIM Node	104		Vehicle Type	Car										
	MCC	Nodo						Flow Pe	ak Time	Differ	ence		GEH	
Junction Name	Site	No.	From Arm	FromLink	To Arm	ToLink	MCC ID	Observed	Modelled	Value	%	Value	<5	Individual Flows
Church Loke	4	104	A	24	А	23	4AA	0	0	0	-	0	Y	OK
Church Loke	4	104	A	24	В	29	4AB	14	14	0	0%	0	Y	OK
Church Loke	4	104	A	24	С	27	4AC	0	0	0	-	0	Y	OK
Church Loke	4	104	A	24	D	26	4AD	25	25	0	0%	0	Y	OK
Church Loke	4	104	В	6	А	23	4BA	17	17	0	0%	0	Y	OK
Church Loke	4	104	В	6	В	29	4BB	0	0	0	-	0	Y	OK
Church Loke	4	104	В	6	С	27	4BC	0	0	0	-	0	Y	OK
Church Loke	4	104	В	6	D	26	4BD	225	225	0	0%	0	Y	OK
Church Loke	4	104	С	28	A	23	4CA	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	В	29	4CB	2	2	0	0%	0	Y	OK
Church Loke	4	104	С	28	С	27	4CC	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	D	26	4CD	2	2	0	0%	0	Y	OK
Church Loke	4	104	D	10	А	23	4DA	33	33	0	0%	0	Y	OK
Church Loke	4	104	D	10	В	29	4DB	207	210	3	1%	0	Y	OK
Church Loke	4	104	D	10	С	27	4DC	1	1	0	0%	0	Y	OK
Church Loke	4	104	D	10	D	26	4DD	0	0	0	-	0	Y	OK

105

101

Vehicle Type Car

	MCC	Nodo	Node			Flow Pe	ak Time	Diffe	rence		GEH			
Junction Name	Sito	Noue	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Sile	NO.						Observed	Modelled	Value	%	Value	<5	Flows
B1150 Bridge	5	105	А	12	А	37	5AA	0	0	0	-	0	Y	OK
B1150 Bridge	5	105	A	12	В	12	5AB	590	549	-41	-7%	2	Y	OK
B1150 Bridge	5	105	В	37	А	37	5BA	607	604	-3	0%	0	Y	OK
B1150 Bridge	5	105	В	37	В	12	5BB	0	0	0	-	0	Y	OK

PM – LGV

VISSIM Node

Vehicle Type LGV

Flow Peak Time Differ MCC Node Junction Name ToLink MCC ID From Arm FromLink To Arm Site No. Observed Modelled Value Rectory Road roundabout 1 101 А 38 3 1AA 0 0 0 А Rectory Road roundabout 1 38 В 19 1AB 0 0 0 101 А Rectory Road roundabout 1 101 А 38 С 22 1AC 96 99 3 Rectory Road roundabout 27 27 0 1 101 А 38 D 18 1AD Rectory Road roundabout 1 0 0 В 20 А 3 1BA 0 101 Rectory Road roundabout 1BB 0 0 0 1 101 В 20 В 19 Rectory Road roundabout 1 1BC 0 0 В 0 101 20 С 22 Rectory Road roundabout 1BD 0 0 0 1 В 101 20 D 18 Rectory Road roundabout 1 101 101 0 101 С 3 1CA 1 А

ence		GEH	
%	Value	<5	Individual Flows
-	0	Y	OK
-	0	Y	OK
3%	0	Y	OK
0%	0	Y	OK
-	0	Y	OK
-	0	Y	OK
-	0	Y	OK
-	0	Y	OK
0%	0	Y	OK

Rectory Road roundabout	1	101	С	1	В	19	1CB	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	С	1	С	22	1CC	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	С	1	D	18	1CD	27	27	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	А	3	1DA	22	22	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	В	19	1DB	0	0	0	-	0	Y	OK
Rectory Road roundabout	1	101	D	17	С	22	1DC	19	19	0	0%	0	Y	OK
Rectory Road roundabout	1	101	D	17	D	18	1DD	0	0	0	-	0	Y	OK

102

Vehicle Type LGV

	MCC	Nodo						Flow P	eak Time	Diffe	rence		GEH	
Junction Name	Sito	Noue	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Olle	NO.						Observed	Modelled	Value	%	Value	<5	Flows
Petrol Station Gyratory	2	102	A	10011	A	15	2AA	0	0	0	-	0	Y	OK
Petrol Station Gyratory	2	102	A	10011	В	10	2AB	2	2	0	0%	0	Y	OK
Petrol Station Gyratory	2	102	A	34	D	12	2AD	69	70	1	1%	0	Y	OK
Petrol Station Gyratory	2	102	В	11	A	15	2BA	13	11	-2	-15%	1	Y	OK
Petrol Station Gyratory	2	102	В	11	В	10	2BB	0	0	0	-	0	Y	OK
Petrol Station Gyratory	2	102	В	11	D	12	2BD	45	40	-5	-11%	1	Y	OK
Petrol Station Gyratory	2	102	D	37	A	15	2DA	79	76	-3	-4%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	В	10	2DB	46	45	-1	-2%	0	Y	OK
Petrol Station Gyratory	2	102	D	37	D	12	2DD	0	1	1	-	1	Y	OK

VISSIM Node

103

Vehicle Type LGV

	MCC	Nodo						Flow P	eak Time	Diffe	rence		GEH	
Junction Name	Sito	No	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Olle	NO.						Observed	Modelled	Value	%	Value	<5	Flows
Great Hautbois Road / Station Road	3	103	A	4	А	33	3AA	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	А	4	В	34	3AB	71	72	1	1%	0	Y	OK
Great Hautbois Road / Station Road	3	103	А	4	С	31	3AC	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	А	33	3BA	92	87	-5	-5%	1	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	В	34	3BB	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	С	31	3BC	1	1	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	А	33	3CA	1	1	0	0%	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	В	34	3CB	0	0	0	-	0	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	С	31	3CC	0	0	0	-	0	Y	OK

VISSIM Node

104

Vehicle Type LGV

	MCC	Nodo						Flow P	eak Time	Diffe	rence		GEH	
Junction Name	Site	Node No.	From Arm	FromLink	To Arm	ToLink	MCC ID	Observed	Modelled	Value	%	Value	-5	Individual Flows
Church Loke	4	104	А	24	А	23	4AA	0	0	0	-	0	Y	OK
Church Loke	4	104	A	24	B	29	4AB	2	2	0	0%	0	Y	OK
Church Loke	4	104	A	24	С	27	4AC	0	0	0	-	0	Y	OK
Church Loke	4	104	A	24	D	26	4AD	1	1	0	0%	0	Y	ОК
Church Loke	4	104	В	6	A	23	4BA	6	6	0	0%	0	Y	OK
Church Loke	4	104	В	6	В	29	4BB	0	0	0	-	0	Y	OK

Church Loke	4	104	В	6	С	27	4BC	0	0	0	-	0	Y	OK
Church Loke	4	104	В	6	D	26	4BD	51	51	0	0%	0	Y	OK
Church Loke	4	104	С	28	А	23	4CA	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	В	29	4CB	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	С	27	4CC	0	0	0	-	0	Y	OK
Church Loke	4	104	С	28	D	26	4CD	0	0	0	-	0	Y	OK
Church Loke	4	104	D	10	А	23	4DA	2	2	0	0%	0	Y	OK
Church Loke	4	104	D	10	В	29	4DB	45	45	0	0%	0	Y	OK
Church Loke	4	104	D	10	С	27	4DC	0	0	0	-	0	Y	OK
Church Loke	4	104	D	10	D	26	4DD	0	0	0	-	0	Y	OK

105

Flow Peak Time Differ MCC Node MCC ID FromLink To Arm ToLink Junction Name From Arm Site No. Observed Modelled Value B1150 Bridge 5 37 5AA 0 0 0 105 А 12 А B1150 Bridge 5 12 5AB 107 111 4 105 А 12 В B1150 Bridge 5 122 122 0 105 В 37 37 5BA А B1150 Bridge 5 12 5BB 0 0 0 105 В 37 В

PM – HGV

```
VISSIM Node
```

101

102

Vehicle Type HGV

Vehicle Type LGV

	MCC	Nede						Flow P	eak Time	Diffe	rence		GEH	
Junction Name	Sito	Node	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Site	NU.						Observed	Modelled	Value	%	Value	<5	Flows
Rectory Road roundabout	1	101	A	38	A	3	1AA	0	0	0	-	0%	Y	OK
Rectory Road roundabout	1	101	A	38	В	19	1AB	0	0	0	-	0%	Y	OK
Rectory Road roundabout	1	101	А	38	С	22	1AC	7	7	0	0%	0%	Y	OK
Rectory Road roundabout	1	101	А	38	D	18	1AD	2	2	0	0%	0%	Y	OK
Rectory Road roundabout	1	101	В	20	А	3	1BA	0	0	0	-	0%	Y	OK
Rectory Road roundabout	1	101	В	20	В	19	1BB	0	0	0	-	0%	Y	OK
Rectory Road roundabout	1	101	В	20	С	22	1BC	0	0	0	-	0%	Y	OK
Rectory Road roundabout	1	101	В	20	D	18	1BD	0	0	0	-	0%	Y	OK
Rectory Road roundabout	1	101	С	1	А	3	1CA	11	11	0	0%	0%	Y	OK
Rectory Road roundabout	1	101	С	1	В	19	1CB	0	0	0	-	0%	Y	OK
Rectory Road roundabout	1	101	С	1	С	22	1CC	0	0	0	-	0%	Y	OK
Rectory Road roundabout	1	101	С	1	D	18	1CD	5	5	0	0%	0%	Y	OK
Rectory Road roundabout	1	101	D	17	А	3	1DA	1	1	0	0%	0%	Y	OK
Rectory Road roundabout	1	101	D	17	В	19	1DB	0	0	0	-	0%	Y	OK
Rectory Road roundabout	1	101	D	17	С	22	1DC	1	1	0	0%	0%	Y	OK
Rectory Road roundabout	1	101	D	17	D	18	1DD	0	0	0	-	0%	Y	OK

VISSIM Node

Vehicle Type HGV

Junction Name From Arm FromLink To Arm ToLink MCC ID Flow Peak Time Difference GEH										
	Junction Name	From Arm	FromLink	To Arm	ToLink	MCC ID	Flow Peak Time	Difference	GEH	

ence		GEH	
%	Value	< 5	Individual Flows
-	0	Y	OK
4%	0	Y	OK
0%	0	Y	ОК
-	0	Y	OK

	MCC	Node												Individual
	Site	No.						Observed	Modelled	Value	%	Value	<5	Flows
Petrol Station Gyratory	2	102	А	10011	А	15	2AA	0	0	0	-	0%	Y	OK
Petrol Station Gyratory	2	102	А	10011	В	10	2AB	0	0	0	-	0%	Y	OK
Petrol Station Gyratory	2	102	А	34	D	12	2AD	5	5	0	0%	0%	Y	OK
Petrol Station Gyratory	2	102	В	11	А	15	2BA	0	0	0	-	0%	Y	OK
Petrol Station Gyratory	2	102	В	11	В	10	2BB	0	0	0	-	0%	Y	OK
Petrol Station Gyratory	2	102	В	11	D	12	2BD	2	2	0	0%	0%	Y	OK
Petrol Station Gyratory	2	102	D	37	А	15	2DA	10	9	-1	-10%	32%	Y	OK
Petrol Station Gyratory	2	102	D	37	В	10	2DB	2	2	0	0%	0%	Y	OK
Petrol Station Gyratory	2	102	D	37	D	12	2DD	0	0	0	-	0%	Υ	OK

103

Vehicle Type HGV

	MCC	Nodo						Flow Peak Time		Difference			GEH	
Junction Name	Site	No.	From Arm	FromLink	To Arm	ToLink	MCC ID						_	Individual
	One							Observed	Modelled	Value	%	Value	<5	Flows
Great Hautbois Road / Station Road	3	103	A	4	А	33	3AA	0	0	0	-	0%	Y	OK
Great Hautbois Road / Station Road	3	103	A	4	В	34	3AB	5	5	0	0%	0%	Y	OK
Great Hautbois Road / Station Road	3	103	A	4	С	31	3AC	0	0	0	-	0%	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	А	33	3BA	10	9	-1	-10%	32%	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	В	34	3BB	0	0	0	-	0%	Y	OK
Great Hautbois Road / Station Road	3	103	В	15	С	31	3BC	0	0	0	-	0%	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	А	33	3CA	0	0	0	-	0%	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	В	34	3CB	0	0	0	-	0%	Y	OK
Great Hautbois Road / Station Road	3	103	С	32	С	31	3CC	0	0	0	-	0%	Y	OK

VISSIM Node

104

Vehicle Type HGV

	MCC	Nada						Flow Peak Time		Difference			GEH	
Junction Name	Sito	Node	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Sile	NO.						Observed	Modelled	Value	%	Value	<5	Flows
Church Loke	4	104	A	24	A	23	4AA	0	0	0	-	0%	Y	OK
Church Loke	4	104	A	24	В	29	4AB	0	0	0	-	0%	Y	OK
Church Loke	4	104	A	24	С	27	4AC	0	0	0	-	0%	Y	OK
Church Loke	4	104	A	24	D	26	4AD	0	0	0	-	0%	Y	OK
Church Loke	4	104	В	6	A	23	4BA	1	1	0	0%	0%	Y	OK
Church Loke	4	104	В	6	В	29	4BB	0	0	0	-	0%	Y	OK
Church Loke	4	104	В	6	С	27	4BC	0	0	0	-	0%	Y	OK
Church Loke	4	104	В	6	D	26	4BD	2	2	0	0%	0%	Y	OK
Church Loke	4	104	С	28	A	23	4CA	0	0	0	-	0%	Y	OK
Church Loke	4	104	С	28	В	29	4CB	0	0	0	-	0%	Y	OK
Church Loke	4	104	С	28	С	27	4CC	0	0	0	-	0%	Y	OK
Church Loke	4	104	С	28	D	26	4CD	0	0	0	-	0%	Y	OK
Church Loke	4	104	D	10	A	23	4DA	0	0	0	-	0%	Y	OK
Church Loke	4	104	D	10	В	29	4DB	3	2	-1	-33%	63%	Y	OK
Church Loke	4	104	D	10	С	27	4DC	0	0	0	-	0%	Y	OK
Church Loke	4	104	D	10	D	26	4DD	0	0	0	-	0%	Y	OK

Coltishall Vissim Model Validation Report

VISSIM Node	105		Vehicle Type	HGV										
	MOO	Nede						Flow Peak Time		Difference			GEH	
Junction Name	Sito	Node	From Arm	FromLink	To Arm	ToLink	MCC ID							Individual
	Sile	NO.						Observed	Modelled	Value	%	Value	<5	Flows
B1150 Bridge	5	105	A	12	A	37	5AA	0	0	0	-	0%	Y	OK
B1150 Bridge	5	105	A	12	В	12	5AB	7	7	0	0%	0%	Y	OK
B1150 Bridge	5	105	В	37	A	37	5BA	11	11	0	0%	0%	Y	OK
B1150 Bridge	5	105	В	37	В	12	5BB	0	0	0	-	0%	Y	OK

Appendix E – Forecast Reports

North Walsham Modelling

Forecast Report

ESCO Developments, Flagship Housing Group and Lovell Partnerships

22nd September 2023

Delivering a better world

Quality information

Prepared by	CI	necked by	Verified by		Approved by
BO		Monsi Progie	Navano	3	fry Ad
B Stock Graduate Consul	M Itant Se	Drapier Gomis enior Consultant	Javier Navarro Principal Cons	o Pardo sultant	Phil Arnold Associate Director
Revision Histor	У				
Revision	Revision date	Details	Authorized	Name	Position
Distribution List	t				
# Hard Copies	PDF Required	Association /	Company Name		

Prepared for:

ESCO Developments, Flagship Housing Group and Lovell Partnerships

Prepared by:

Ben Stock Graduate Consultant

Contact:

Martin Drapier Gomis Senior Consultant M: +44 7921646161 E: martin.drapiergomis@aecom.com

AECOM Limited AECOM House 63-77 Victoria Street St Albans Hertfordshire AL1 3ER United Kingdom

T: +44(0)1727 535000 aecom.com

© 2023 AECOM Limited. All Rights Reserved.

This document has been prepared by AECOM Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Table Of Contents

1. Introduction	.1	
Base VISSIM Model	1	
Model Purpose	1	
Report Structure	2	
2. Forecast Model Development	.3	
Overview	3	
Network Coding	3	
Network Coding – Do Minimum	3	
Network Coding – Do Something	4	
Network Coding – Do Something with Mitigation	5	
3. Future Year Demand	.7	
Zoning	7	
Demand Methodology	8	
Routing Assumptions	9	
4. Model Assignment	10	
Convergence	10	
5. Model Evaluation	11	
Introduction	11	
AM Peak Hour Results	11	
Network Performance – AM Peak	11	
Average Delay	11	
Average Speed Plots	12	
Journey Times	14	
Journey Time Route 2 – A149 and B1145	14	
Journey Time Route 8 – B1150, A149, and B1145	15	
PM Peak Hour Results	17	
Network Performance – PM Peak	17	
Average Delay	17	
Average Speed Plots	18	
Journey Times – PM Peak	20	
Journey Time Route 2 – A149 and B1145	20	
Journey Time Route 8 – B1150, A149, and B1145	21	
6. Junction Analysis	24	
Introduction	24	
Key Junctions	24	
Cromer Road / A149 / B1145 Junction (1)	25	
Cromer Road / Aylsham Road / Mundesley Road Junction (2)	26	
B1150 Norwich Road / A149 Junction (3)	27	
Norwich Road / Millfield Road Junction (4)	30	
7. Conclusions	32	
8. Appendix A – Demand Development	33	
External Residential Trips – AM Peak	33	
nternal Residential Trips – AM Peak		
External Residential Trips – PM Peak	34	
Internal Residential Trips – PM Peak	34	
Employment Trips (Car/LGV) – AM Peak	35	
Employment Trips (HGV) – AM Peak	35	

Employment Trips (Car/LGV) – PM Peak	36
Employment Trips (HGV) – PM Peak	36

1. Introduction

Base VISSIM Model

- 1.1 The 2022 VISSIM Base model for North Walsham has been used as a starting point to develop the forecast scenarios. AECOM developed and validated the Vissim Base model at the end of 2022.
- 1.2 The 2022 Base model was successfully calibrated and validated to replicate the existing operation during the traffic surveys for the North Walsham Model area, shown in Figure 1-1. Further details regarding the Base model operation and the calibration and validation results can be found in the VISSIM Local Model Validation Report for North Walsham: "North Walsham Local Model Validation Report."

Figure 1-1 – North Walsham Modelled Area

1.3 The forecast year models have been developed for the 2036 forecast year. The models were developed for the Weekday AM and PM peak hours defined as 07:45 – 08:45 in AM and 16:30 – 17:30 in PM. Thirty-minute warm-up and fifteen-minute cool-down periods have also been modelled to saturate the network with traffic and allow journeys to be completed after the peak hour.

Model Purpose

- 1.4 The forecast models have been used to assess the operation of the network in 2036 in line with the forecast assumptions contained in the Transport Assessment (TA) for North Walsham Western Urban Extension (NWWUE). Three different scenarios: 'Do Minimum', 'Do Something', and 'Do Something with Mitigation' have been developed for the 2036 forecast year.
- 1.5 The Do Minimum scenario includes the estimated traffic growth in the area for the forecast year and proposed infrastructure changes at the Norwich Road/A149/Grammar School Road junction. The infrastructure changes are discussed in the Network Coding section.
- 1.6 The Do Something scenario has been developed using the Do Minimum scenario as a starting point. In addition to the same demand and network changes included in the Do Minimum scenario, the Do Something

scenarios include the additional trips generated by the NWWUE which were added on top of the Do Minimum demand and the proposed Link Road through the NWWUE development.

- 1.7 The Do Something with Mitigation scenario is the Do Something scenario with a proposed mitigation on Aylsham Road. Further detail on the differences between scenarios can be found in Table 2-1.
- 1.8 The operation of the Do Minimum model has been used as a benchmark to assess the impact of the trip generation and infrastructure changes linked to the NWWUE included in the Do Something scenarios.

Report Structure

- 1.9 The remainder of the report is structured as follows:
 - Section 2 provides an overview of the forecast scenarios and outlines the development of the forecast model networks;
 - Section 3 describes the demand development methodology for future scenarios;
 - Section 4 describes the assignment methodology;
 - Section 5 presents and analyses the forecast modelling results;
 - Section 6 provides an analysis of key areas/ locations in the models; and
 - Section 7 provides a summary and conclusions.

2. Forecast Model Development

Overview

- 2.1 The North Walsham forecast models were coded using the same software version (Vissim 21.00-12) as used to develop the 2022 Base models. This section outlines the changes made to the Base models to build the forecast models.
- 2.2 Three forecast model scenarios were developed:
 - 2036 'Do Minimum' model for AM and PM peak periods;
 - 2036 'Do Something' model for AM and PM peak periods; and
 - 2036 'Do Something + Mitigation' model for AM and PM peak periods.
- 2.3 The demand and network assumptions included in each scenario have been summarised in Table 2-1.

Scenario	Network	Demand
Do Minimum	Base Model network + B1150/A149 Improvement	2022 Base * 2022-2036 Growth Factor
Do Something	Do Minimum network + Link Road	Do Minimum + WUE 2036 Demand
Do Something + Mitigation	Do Something network + Aylsham Road Improvement	Do Minimum + WUE 2036 Demand

Table 2-1 – Forecast Scenarios

Network Coding

2.4 This section discusses the committed schemes and development sites coded in the forecast scenarios. Unless otherwise stated, all the modelling elements not affected by the proposed schemes – such as the desired speed decisions, reduced speed areas, public transport, and priority rules – have been coded consistently with the 2022 Base model.

Network Coding – Do Minimum

2.5 The Do Minimum network has been updated to include the proposed new layout for the B1150 / A149 / Grammar School Road junction. The layout for this junction is shown below in Figure 2-1.

- 2.6 The timings at the signalised junctions have been optimised to reflect the predicted growth in traffic flows. The proposed signal optimisation has been consistently applied in all the forecast scenarios and assumes that the existing signal controllers will be appropriately maintained and updated in the future.
- 2.7 Furthermore, some additional priority rules have been added to the models to accurately represent the expected cooperative/ keep clear driving behaviours at locations which become more congested in the future year models, due to higher traffic flows. These rules would have no impact in the base year as this congestion is not present.

Network Coding – Do Something

- 2.8 The Do Something scenarios have been developed using the Do Minimum as a starting point, including the B1150 / A149 / Grammar School Road junction improvement shown in Table 2-1. In addition to the changes and optimisation included in the Do Minimum scenarios, the Do Something scenarios also include the new link road through the NWWUE development and the roundabout junctions at either end to connect to the existing network.
- 2.9 The 2036 scenarios include the full extent of the proposed link road within the existing road network. Figure 2-2 shows the alignment of the NWWUE link road, highlighting the key junctions and signalised crossings included in the model, which include the access junctions with the B1150 and A149, the junctions with Aylsham Road and Skeyton Road and the crossing of Weavers Way.

Figure 2-2 – Do Something Network

Network Coding – Do Something with Mitigation

2.10 The Do Something with Mitigation scenarios have been developed using the Do Something as a starting point. In addition to the changes included in the Do Something scenarios, the Do Something with Mitigation scenarios also include the proposed one-way signalised layout on Aylsham Road under the bridge. The proposed layout is shown below in Figure 2-3.

Figure 2-3 – Aylsham Road One-way Signalised Layout

2.11 The signals at the proposed one-way signalised junction have been optimised, with signal timings adapting to arrival patterns, allowing the model to provide a more realistic representation of the proposed signal operation, minimising delay.

3. Future Year Demand Zoning

Lonna

- 3.1 The zoning system developed for the Vissim Base model has also been used for the Do Minimum models.
- 3.2 The zoning system included in the Do Something scenarios has been updated to include the additional loading points for the NWWUE demand. In the Do Something scenario, seven additional zones have been added to represent access points to the development.
- 3.3 Table 3-1 shows the correspondence between the zone numbers and the development sites.

Table 3-1 – Development Zones

Development Site	Zone
Residential Zone South	25
Residential Zone Central	26
Residential Zone North Central	27
Residential Zone North	28
Local Centre / School	29
Employment North Central	30
Employment North	31

3.4 Figure 3-1 shows the locations of the VISSIM zones in the Do Something networks.

Figure 3-1 – Do Something Scenario Zones

Demand Methodology

- 3.5 The forecast Vissim demand matrices were derived using the growth factors and the trip distribution from the Transport Assessment (TA) developed by AECOM.
- 3.6 Table 3-2 shows the growth factors derived for each forecast year based on TEMPRO, as set out in the TA. These growth factors were applied to the Base model demand matrices to uplift traffic volumes for the 2036 Do Minimum scenarios.

Table 3-2 – Growth Factors

Vehicle	2036 AM	2036 PM
Car/LGV	1.084	1.080
HGV	1.039	1.039

- 3.7 The NWWUE trip generation and trip distribution assumptions included in the TA have been used to derive the number of additional trips associated with the NWWUE and the distribution in North Walsham. These trips have been added to the Do Minimum scenarios to develop the Do Something forecast demand matrix forecasts.
- 3.8 Table 3-3 details the additional trips included in the Do Something models for each forecast year.

Table 3-3 – Do Something Development Demand

Development Demand 2036 AM 2036 PM

Car/LGV	1,261	1,013
HGV	12	7

- 3.9 It should be noted that the development trip totals were provided in two vehicle types: Cars/Light Goods Vehicles (LGVs) and Heavy Goods Vehicles (HGVs). However, since the Vissim models categorise Cars and LGVs as separate vehicle types, Car and LGV proportions were calculated from the base matrix and used to split the development demand.
- 3.10 The absolute demand changes for each Origin-Destination (O-D) pair were applied by vehicle class (Cars, LGVs and HGVs) to the base peak hour matrices from the Vissim base model to develop the Forecast demand matrices.
- 3.11 The forecast peak hour matrices were profiled into 15-minute periods using the same profiles used in the Vissim base model matrices to develop each 15-minute matrix, creating six matrices for each vehicle type.

Routing Assumptions

- 3.12 There are multiple routes available between the development zones and the eastern side of the town centre. For a few O-D pairs, the assignment of trips within the model area was not considered realistic, due to some town-centre networks not being included in the model area, such as King's Arms Street or Yarmouth Road (due to lack of survey data). In these cases, the model was unable to dynamically adjust routeing to respond to delay increases, as the destinations were fixed.
- 3.13 The O-D patterns were therefore adjusted in a few cases. Google Maps was used to indicate which routes would be attractive, as shown in Figure 3-2, to define adjustments to the preferred town centre destination zones for each of the development zones. These routing assumptions have been developed consistently with the TA to provide a realistic representation of the trip distribution expected in the area.

Figure 3-2 – Route Comparison from Development Location to Zone 6

4. Model Assignment

Convergence

- 4.1 The model assignment and convergence parameters for the 2036 models used the same settings as the base year models with a minor change in the Kirchhoff parameter (it was changed from 10 to 3.5), as it was not possible to converge the 2036 Do Something PM model using the same parameters defined in the Base model, as there are significant changes in future congestion patterns. The Kirchhoff parameter is consistent in all the 2036 scenarios to allow reliable comparison of Do Minimum and Do Something scenarios. Further details of the convergence process followed can be found in the North Walsham Vissim Local Model Validation Report (LMVR).
- 4.2 Fixed signal timings, based on average green times, were used during forecast model convergence, allowing the model to reach a stable convergence.
- 4.3 The Kirchoff parameter affects the flow balance between the lowest cost route for each O-D pair and the alternative routes. Analysis was undertaken of the 2036 AM model assignments, which converged using both settings, which showed that the routing changes caused by the different Kirchhoff values had a negligible effect on the model operation.

5. Model Evaluation

Introduction

- 5.1 This section presents the analysis of results for the Do Minimum, Do Something and Do Something with Mitigation forecast scenarios. The results were extracted for the following models and analysed:
 - Base (2022) AM and PM peak hours;
 - Do Minimum (2036) AM and PM peak hours;
 - Do Something (2036) AM and PM peak hours; and
 - Do Something with Mitigation (2036) AM and PM peak hours.
- 5.2 The analysis in the following section has been divided into the peak hours for each scenario, as each has unique characteristics.
- 5.3 The results were extracted from the models and averaged for 20 simulation runs with different random seeds. Different seeds randomise the release of vehicles into the network, resulting in a different chain of events, replicating daily variability.

AM Peak Hour Results

5.4 This section presents results for the modelled network in the AM period and includes an analysis of total delay, plots of average speeds and journey times within the modelled area.

Network Performance – AM Peak

5.5 The Network Performance results and average speed plots have been extracted from the models to assess the operation of the overall network. These results show the overall delays for each scenario to enable comparison of the performance of the network.

Average Delay

- 5.6 Average delay, including latent delay, has been extracted from the models in seconds per vehicle for the AM peak. The average delay is higher in all forecast scenarios when compared to the Base model, which has an average delay of 69 seconds per vehicle. The Do Minimum has 82 seconds per vehicle; the Do Something has 100 seconds per vehicle and Do Something with Mitigation has 105 seconds per vehicle.
- 5.7 The increase in average delay in the Do Something with Mitigation scenario is caused by the additional delay and routing changes in the area as a result of the proposed mitigation scheme. The results are shown in Figure 5-1 below.

Average delay (s/veh)

Figure 5-1 – AM Average Delay Per Vehicle (In Seconds)

5.8 The AM forecast models have an average of 2 vehicles in latent demand. This result is caused by vehicles trying to join the network just as the model is finishing and is considered negligible.

Average Speed Plots

- 5.9 The average speeds have been plotted on the network for the Base and Forecast models (Do Minimum, Do Something and Do Something with Mitigation) in Figure 5-2 to Figure 5-5.
- 5.10 A comparison between the speed plots for the Base AM model and the speed plots for the forecast models indicates that the main congestion points across the network remain consistent (darker blue areas) although the increased demand results in longer queues in future.
- 5.11 The Do Minimum scenario results predict slow moving traffic/ queues which extend along B1150 Norwich Road northbound, approaching the A149 / Norwich Road / Grammar School Road signalised junction. Although there are a significant number of additional trips from the NWSUE in the Do Something model, the Do Something scenario only predicts slightly lower speeds along B1150 Norwich Road compared to the Do Minimum scenario, since the Link Road mitigates for much of the impact of the NWWUE trips.
- 5.12 The Do Something with Mitigation scenario shows a very similar performance to the Do Something. The main differences are observed in Aylsham Road, where the proposed mitigation scheme results in a minor increase in delays and queues approaching the underpass, since the signals mean vehicles have to stop. The changes on the B1150 Norwich Road are caused by the routing changes predicted by the model, as drivers change their route to avoid the additional delays on Aylsham Road.
- 5.13 The operation of other key locations identified in the model, such as Cromer Road, or the A149/ B1150 junction are broadly consistent with the existing traffic conditions in all the forecast models.

Figure 5-2 – AM Base Speeds

Figure 5-3 – AM Do Minimum 2036 Speeds

Figure 5-4 – AM Do Something 2036 Speed Plot

Figure 5-5 – AM Do Something with Mitigation 2036 Speed Plot

Journey Times

- 5.14 As part of the performance assessment carried out in the present study, the key journey time routes have been analysed to compare delays across the forecast scenarios in the AM peak hour.
- 5.15 Figure 5-6 and Figure 5-9 show the journey time routes selected within the model area, Journey Time Route 2 (A149 and B1145), and Journey Time Route 8 (B1150 Norwich Road, A149, and B1145).

Journey Time Route 2 – A149 and B1145

5.16 Figure 5-6 below shows Journey Time Route (JTR) 2, along the A149 and B1145.

Figure 5-6 – Journey Time Route 2 Diagram

5.17 Figure 5-7 and Figure 5-8 show the modelled results for the Base and all Forecast scenarios in the AM peak hour, for Journey Time Route 2.

- 5.18 Consistent with the average speed analysis above, the journey time results for JTR 2 show that the increase in demand included in the forecast scenarios does not significantly affect the operation of the A149 route, with only a slight increase in journey times in the Do Minimum scenario, relative to the Base year, and a more significant increase in the Do Something scenarios (with and without mitigation).
- 5.19 The additional delay in the Do Something scenarios, in both directions, is focused on the southern section, which includes the Norwich Road (B1150) junction with the A149. In the northbound direction, the overall journey time is 24 seconds higher in the Do Something scenario and 26 seconds higher for the Do Something with Mitigation, relative to the Do Minimum. In the southbound direction, the overall journey time in the Do Something is 30 seconds higher than the Do Minimum and 35 seconds higher for the Do Something with Mitigation, relative to the Do Minimum.

Journey Time Route 2 - Northbound

Journey Time Route 8 - B1150, A149, and B1145

5.20 Figure 5-9 below shows Journey Time Route (JTR) 8, along the B1150, A149 and B1145.

Figure 5-9 – Journey Time Route 8 Diagram

- 5.21 Figure 5-10 and Figure 5-11 show the modelled results for the Base and all Forecast scenarios in the AM peak hour, for Journey Time Route 8.
- 5.22 The northbound journey times on JTR 8 in the forecast models are higher than the Base, especially on the two southernmost sections, which include the effects of the congestion at the A149/Norwich Road/Grammar School Road Junction. The overall journey time on this route for the Do Minimum is 400 seconds, with the journey times for the Do Something and the Do Something with Mitigation 40 seconds and 41 seconds higher respectively.
- 5.23 There is a smaller difference between the journey times on JTR 8 southbound between the different scenarios, with the Do Something and Do Something with Mitigation models have a journey time 26 seconds higher (for both scenarios) across the route compared to the Do Minimum.

Figure 5-10 – Journey Time 8 Northbound AM

Journey Time Route 8 - Southbound

Figure 5-11 – Journey Time 8 Southbound AM

PM Peak Hour Results

5.24 This section presents the results for the modelled network in the PM peak hour for all modelled scenarios. It includes an analysis of total delay, average speed results and journey times within the modelled area.

Network Performance – PM Peak

5.25 The Network Performance results and average speed plots have been extracted from the models to assess the operation of the overall network. These results show the overall delays for each scenario to enable comparison of the performance of the network in each scenario.

Average Delay

- 5.26 Average delay, including latent delay, has been extracted from the models in seconds per vehicle for the PM peak. The average delay is higher in all forecast year scenarios when compared to the base year, where there is an average delay of 76 seconds per vehicle. There is an averaged delay of 129 seconds per vehicle in the Do Minimum, while the Do Something and Do Something with Mitigation models have an average delay of 115 and 125 seconds per vehicle respectively.
- 5.27 The Do Something results show that the Link road creates an alternative route in the network improving the overall performance of the model.
- 5.28 The increase in average delay in the Do Something with Mitigation scenario is caused by routing changes in the area resulting from the proposed mitigation scheme. The results are shown in Figure 5-12 below.

Average delay (s/veh)

Figure 5-12 – PM Average Delay Per Vehicle (In Seconds)

5.29 The PM forecast models have an average of 3 vehicles in latent demand. This result is caused by vehicles trying to join the network just as the model is finishing and is considered negligible.

Average Speed Plots

- 5.30 The average speeds have been plotted on the network for the Base and Forecast PM models Figure 5-13 to Figure 5-16.
- 5.31 A comparison between the PM base year speed plots and the speed plots for the forecast models indicates that the main low speed areas across the network remained consistent (darker blue areas) differing only in magnitude.
- 5.32 There are slow speeds in the Do Minimum scenario along the B1150 Norwich Road northbound, approaching the A149 / Norwich Road / Grammar School Road signalised junction. The Do Something scenario speed plot is similar with queues along the B1150 Norwich Road, but despite the increased number of trips, the average speed is similar due to the addition of the Link Road, which reduces the number of vehicles using B1150 Norwich Road.
- 5.33 The Do Something with Mitigation scenario shows a very similar operation to the Do Something scenario, with only a slight reduction in speeds on Aylsham Road and the B1150 Norwich Road. The decrease in speeds on Aylsham Road is caused by the mitigation scheme, as the introduction of the signals means vehicles need to stop. The reduction in speeds on the B1150 Norwich Road is due to more vehicles choosing this route as due to the additional delay on Aylsham Road.
- 5.34 The operation of other key locations identified in the model, such as Cromer Road, or the A149/ B1150 junction are broadly consistent with the existing traffic conditions in all the forecast models.

Figure 5-13 – PM Base Speeds

Figure 5-14 – PM Do Minimum 2036 Speeds

Figure 5-15 – PM Do Something 2036 Speeds

Figure 5-16 – PM Do Something with Mitigation 2036 Speeds

Journey Times – PM Peak

- 5.35 As part of the performance assessment carried out in the present study, the key journey time routes have been analysed to compare delays across the forecast scenarios in the AM peak hour.
- 5.36 Figure 5-17 and Figure 5-20 shown in the PM peak section show the key journey time routes selected within the model area, Journey Time Route 2 (A149 and B1145), and Journey Time Route 8 (B1150 Norwich Road, A149, and B1145).

Journey Time Route 2 – A149 and B1145

5.37 Figure 5-17 below shows Journey Time Route (JTR) 2, along the A149 and B1145.

Figure 5-17 – Journey Time Route 2 Diagram

- 5.38 Figure 5-18 and Figure 5-19 show the modelled results for the Base and forecast scenarios in the PM peak hour, for Journey Time Route 2.
- 5.39 The increased demand in the Do Something and Do Something with Mitigation models translates to an increased delay on the northbound approach to the A149/Norwich Road/Grammar School Road junction. This junction cannot accommodate the forecast demand in the 2036 Do Minimum PM, so is further over capacity when the development trips are added. The Do Something shows an increase in journey time of 39 seconds, relative to the Do Minimum, while the Do Something with Mitigation show an increase of 44 seconds.
- 5.40 The journey time results are not significantly different between the Do Minimum and Do Something for JTR 2 southbound on the northern section of the route; there are higher journey times in the Do Something scenario, relative to the Do Minimum on the southern section of the route, but in the Do Something with Mitigation scenario the overall journey times are only slightly higher than the Do Minimum.

Journey Time Route 2 - Northbound

Figure 5-18 - Journey Time Route 2 Northbound PM

Figure 5-19 Journey Time Route 2 Southbound PM

Journey Time Route 8 – B1150, A149, and B1145

5.41 Figure 5-20 below shows Journey Time Route (JTR) 8, which runs along the B1150, A149 and B1145.

Figure 5-20 – Journey Time Route 8 Diagram

- 5.42 Figure 5-21 and Figure 5-22 show the modelled results for the Base and forecast scenarios in the PM peak hour, for Journey Time Route 8.
- 5.43 The JTR 8 northbound journey times in the 2036 forecast models are higher than the Base year, especially on the two southernmost sections, which include the effects of the congestion in the A149/Norwich Road/Grammar School Road junction. The overall Do Something journey time is 130 seconds faster than the Do Minimum and the Do Something with Mitigation is 38 seconds faster. It can be observed that despite the increase in trips from the NWWUE, the Link Road releaves some of the congestion on the B1150 Norwich Road.
- 5.44 In the Do Something with Mitigation scenario, vehicles which are deterred from routing along Aylsham Road due to the mitigation, add to the already congested B1150 Norwich Road route, increasing the journey times through the junction. However, the journey time is still faster than the Do Minimum scenario.
- 5.45 There is a smaller difference on JTR 8 southbound between the different scenarios: the Do Something is 32 seconds slower than the Do Minimum, while Do Something with Mitigation is 9 seconds slower than the Do Minimum.

Journey Time Route 8 - Northbound

Journey Time Route 8 - Southbound

Figure 5-22 – Journey Time 8 Southbound PM

6. Junction Analysis

Introduction

6.1 This section presents the analysis of results for the junctions within the study area which have been identified from the survey data/observations in the model area as having the most significant impact on network operation.

Key Junctions

- 6.2 The key locations are defined as follows and can also be seen in Figure 6-1 below:
 - 1 Cromer Road / A149 / B1145 Junction;
 - 2 Cromer Road / Aylsham Road / Mundesley Road Junction;
 - 3 B1150 Norwich Road / A149 Junction; and
 - 4 Norwich Road / Millfield Road Junction.
- 6.3 These locations have been analysed individually in the models to extract queue and delay results for the Do Minimum, Do Something, and Do Something with Mitigation scenarios, to provide an assessment of the NWWUE development impact.
- 6.4 The junction analysis results have been extracted from the Forecast models for each junction. The Millfield Road junction has been run independently with the signals at B1150 Norwich Road / A149 / Grammar School Road being deactivated so that queues and delays can be accurately attributed to this junction.
- 6.5 It should be noted that the operation of some of these key locations depends on variable factors such as on-street parking and courtesy/give-way behaviours, which have been modelled and calibrated to observed queuing patterns/ levels of delay.

Figure 6-1 – Key Junctions in North Walsham Model Area

Cromer Road / A149 / B1145 Junction (1)

- 6.6 Figure 6-2 and Figure 6-3 show the queues and delays in the AM and PM peak hours at the Cromer Road / A149 / B1145 junction. The queue results are set out in the top junction layout and the delays are in the bottom junction layout.
- 6.7 The model results show that the NWWUE development demand included in the AM and PM Do Something / Do Something with Mitigation scenarios results in only a negligible increase in queues and delays at the junction.

Figure 6-2 – Queues in metres and delay in seconds - AM Peak

Figure 6-3 – Queues in metres and delay in seconds - PM Peak

Cromer Road / Aylsham Road / Mundesley Road Junction (2)

- 6.8 Figure 6-4 and Figure 6-5 show the queues and delays in the AM and PM peak hours at the Cromer Road / Aylsham Road / Mundesley Road junction. The queue results are set out in the top junction layout and the delays are in the bottom junction layout.
- 6.9 The model results show that the NWWUE development demand included in the AM and PM Do Something / Do Something with Mitigation scenarios results in only a negligible increase in queues and delays at the junction.

Figure 6-4 – Queues in metres and delay in seconds - AM peak

Figure 6-5 – Queues in metres and delay in seconds - PM peak

B1150 Norwich Road / A149 Junction (3)

- 6.10 Figure 6-6 shows the queues and delays at the signalised junction between Norwich Road and A149 (North Walsham Bypass) in the AM peak hour. The queue results are set out in the top junction layout and the delays are in the bottom junction layout.
- 6.11 The junction analysis results show that the A149/Norwich Road/Grammar School Road junction does not provide enough capacity to accommodate the forecasted demand in the AM Do Something / Do Something with Mitigation, resulting in significant queues and delays approaching the junction, with Norwich Road being the most affected.
- 6.12 When comparing the Do Minimum with the Do Something scenario, the addition of the NWWUE development trips in the AM Do Something scenario results in an increase in delay of approximately 150 seconds approaching the junction from the west for the left-turn, though this reduces to approximately 50-60 seconds for the straight-ahead and right-turn movements. The main capacity issue is for the left-turn movement from Norwich Road to the A149 northbound; due to the extensive queuing on this approach the left-turn flare struggles to be accessed, as vehicles need to change lanes twice, and is therefore inefficiently utilised and there is also limited green time allocated to the left-turn movement.
- 6.13 The increase in delay noted above in the Do something scenario relative to the Do Minimmum is also reflected in longer queues. Queues increase by approximately 120 metres on the Norwich Road approach. The queues generated at the A149/ Norwich Road/Grammar School Road junction reach the Norwich Road/ Millfield Road junction reducing gap availability for the vehicles from Millfield Road to access Norwich Road northbound.
- 6.14 When comparing the Do Something scenario with the Do Something with Mitigation, it can be observed that the mitigation scheme causes a small, but consistent increase in queues and delays at all arms of the junction. This is caused by the mitigation making Aylsham Road a less attractive route and vehicles rerouting through this junction.

6.15 The increase in delay at the other arms and movements is significantly lower at approximately 10 to 20 seconds on the remaining three arms.

Figure 6-6 – Queues in metres and delay in seconds - AM peak

- 6.16 Figure 6-8 shows the queues and delays at the signalised junction between Norwich Road and A149 for the PM peak hour.
- 6.17 As in the AM peak, the junction analysis results show that the A149/Norwich Road/Grammar School Road junction does not provide enough capacity to accommodate the demand in any of the forecast scenarios, resulting in significant queues and delays approaching the junction, especially in Norwich Road.
- 6.18 The addition of the NWWUE development trips and link road in the Do Something scenario results in an approximate 10-second reduction in delay approaching the junction from B1150 Norwich Road. There are, however, increases in delay of approximately 30-50 seconds in the remaining three arms.
- 6.19 When comparing the Do Minimum scenario to the Do Something, the average queue length along B1150 Norwich Road was reduced by approximately 80 metres in the Do Something scenario. However, the A149 arms and Grammar School Road arm increased by approximately 50-60 metres. Delays follow similar suit as there is a decrease in the B1150 Norwich Road but an increase in the rest of the arms. This is caused by the routing allowed by the Link Road. Additionally, this effect seems to be also caused by the signals at the junction, which respond differently to the different arrival patterns.
- 6.20 When comparing the Do Somethingscenario to the Do Something with Mitigation scenario it can be observed that the mitigation causes more delay, which results in more vehicles routeing through the B1150 Norwich Road junction, increasing delay in this location. This changes the arrival patterns at the junction, meaning these is less queueing on the A149 southbound but an increased queue on Norwich Road in the Do Something with Mitigation.
- 6.21 The routing patterns in the PM peak are mainly formed by vehicles travelling to North Walsham town centre from the main access points (Norwich road and A149). The Link Road together with Aylsham Road provides a suitable alternative route that allows some of these vehicles to reach the town centre and avoid the delays at Norwich road / A149 junction. Figure 6-7, shows the different routes in blue, orange and green.

- 6.22 It should be noted that the additional delay in Aylsham Road created by the proposed mitigation makes both routes (Link Road in blue and Millfield Road in orange) less attractive, reducing the number of vehicles that choose this route over the B1150 Norwich Road / A149 junction (green in the figure).
- 6.23 This difference between Do Something and Do Something with Mitigation is not apparent in the AM peak due to the different routing patterns and the tidal nature of flows.

Figure 6-7 Alternative routes into North Walsham town centre from the south.

- 6.24 Changes in delay and queues on Grammar School Road and the A149 Northbound are negligible between the Do Something and the Do Something with Mitigation.
- 6.25 The difference in queues and delays between the Do Minimum and Do Something is lower than in the AM Peak, due to higher congestion levels in the PM Do Minimum scenario and the different travel patterns generated by the NWWUE development.

Figure 6-8 – Queues in metres and delay in seconds - PM peak

Norwich Road / Millfield Road Junction (4)

- 6.26 Figure 6-9 shows the queues and delays at the signalised Norwich Road/ Millfield Road junction for the AM peak hour. The queue results are set out in the top junction layout and the delays are in the bottom junction layout.
- 6.27 The results show no significant impact on this junction in the AM and PM peaks as the queues and delays are relatively stable after additional trips from the NWWUE development. It should be noted that the operation of this junction is likely to be affected by the queues generated at the A149/Norwich Road/Grammar School Road junction.

Figure 6-9 – Queues in metres and delay in seconds - AM peak

6.28 Figure 6-10 shows the queues and delays at the Norwich Road/ Millfield Road junction in the PM peak hour.

Figure 6-10 – Queues in metres and delay in seconds - PM peak
7. Conclusions

- 7.1 The forecast Vissim models have been developed and updated to represent the 2036 future year scenarios for the Do Minimum (future growth without North Walsham Western Urban Extension (NWWUE) but including the proposed infrastructure changes at the B1150 / A149 signalised junction) and Do Something (with NWWUE). A further Do Something with Mitigation model has also been developed to include the Aylsham Road one-way signalised junction under the bridge. The comparison of the Do Something and Do Minimum has been made to assess the impact of the NWWUE development.
- 7.2 The models show that the Norwich Road / A149 signalised junction struggles to accommodate the forecasted demand, resulting in longer queues and delays on all approaches which can impact other junctions such as the Norwich Road / Millfield Road junction. While there is an increase in queue and delay in the AM peak, in the PM peak, the Do Something model has a shorter queue length and lower delay when compared to the Do Minimum PM. The Do Something with Mitigation PM peak has a similar queue length and delay as the Do Minimum PM model.
- 7.3 The Do Something with Mitigation models increase slightly queue lengths and delays at other locations in the network, such as Aylsham Road with the Link Road junction, due to the mitigation reducing the attractiveness of the Aylsham Road underpass. However, these rerouting effects are considered negligible when comparing the Do Something and Do Something with Mitigation scenarios.
- 7.4 The model operation and results from the other key locations identified in the area, such as Aylsham Road or the Cromer Road/ B1145 signalised junction, show that the additional NWWUE trip generation in the 2036 forecast year will not significantly increase queues and delays at these locations.

8. Appendix A – Demand Development

External Residential Trips – AM Peak

Internal Residential Trips – AM Peak

Zone	30	31	32	33	34	35	36
30					87	7	7
31					23	2	2
32					43	4	4
33					10	1	1
34	31	8	16	4			
35	3	1	1	0			
36	3	1	1	0			

External Residential Trips – PM Peak

Internal Residential Trips – PM Peak

Zone	30	31	32	33	34	35	36
30					2	3	3
31					1	1	1
32					1	1	1
33					0	0	0
34	4	1	2	0			
35	5	1	2	1			
36	5	1	2	1			

Employment Trips (Car/LGV) – AM Peak

Employment Trips (HGV) – AM Peak

Zone	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
1																																				
2																																				
3																																				
4																																				
5																																			4	4
6																																				
7																																				
8																																				
9																																				
10																																				
11																																				
12																																				
13																																				
14																																				
15																																				
16																																				
17																																				
18																																				
19																																				
20																																				
21																																				
22																																				
23																																				
24																																				
25																																				
26																																				
27																																				
28																																				
29																																				
30																																				
31																																				
32																																				
33																																				
34																																				
35					2	2																														
36					2	2																														

1 2 3 4 5 6 7 8 9 0 1 1 1 1 1 2 3 4 5 6 7 8 9 0 1

Employment Trips (Car/LGV) – PM Peak

Employment Trips (HGV) – PM Peak

aecom.com

Coltishall Forecast Model Report

The Client ESCO Developments, Flagship Housing Group and Lovell Partnerships

22nd September 2023

Delivering a better world

Quality information

Prepared by	Check	ed by	Verified by		Approved by			
BO	He	nti Propie	Navar		his Ad			
Martin Drapier Gor Senior Consultant Graduate Consulta	mis Martin Senior ant	Drapier Gomis Consultant	Javier Navarro Principal Const	Pardo ıltant	Phil Arnold Associate Director			
Revision History								
Revision	Revision date	Details	Authorized	Name	Position			
Distribution List	PDF Required	Association /	Company Name					

Prepared for:

The Client ESCO Developments, Flagship Housing Group and Lovell Partnerships

Prepared by:

Martin Drapier Gomis Senior Consultant M: +44 7921646161 E: martin.drapiergomis@aecom.com

AECOM Limited Aldgate Tower 2 Leman Street London E1 8FA United Kingdom aecom.com

© 2023 AECOM Limited. All Rights Reserved.

This document has been prepared by AECOM Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Table of Contents

1.	Table of Contents	.4
2.	Figures	. 5
3.	Tables	. 5
4.	Introduction	. 6
Backg	round	6
Base \	Vissim Model	6
Model	Purpose	7
Repor	t Structure	7
5.	Forecast Model Development	. 8
Overvi	iew	8
Netwo	ork Coding	8
6.	Future Year Demand	11
Introdu	uction	.11
Zoning	g	.11
Dema	nd Methodology	.11
7.	Model Assignment and Evaluation	13
8.	Model Results	14
Introdu	uction	14
AM Re	esults	14
1.9.1	Network Performance – AM Peak	14
1.9.2	Average Delay	14
1.9.3	Average Speed Plots	15
1.9.4	Journey Time Results – AM Peak	17
PM Re	esults	19
1.9.5	PM – Overall Network Performance	19
1.9.6	Average Delay	19
1.9.7	Average Speed Plots	20
1.9.8	Journey Time Results – PM Peak	22
9.	Junction Analysis	25
Introdu	uction	25
Rector	ry Road / Norwich Road Roundabout (1)	26
Norwig	ch Road and B1354 Gyratory (PFS) (2)	27
High S	Street (3)	29
High S	St / Gt Hautbois Rd / Station Rd Junction (4)	31
10.	Conclusions	34
Appe	endix A – Demand Development Matrices	35

Figures

Figure 4-1 Coltishall Vissim Model Area	6
Figure 5-1 B1150 Norwich Road Proposed Infrastructure Change Layout	9
Figure 5-2 Parked cars on High Street	9
Figure 5-3 PM queuing on High Street, from floating car footage	10
Figure 6-1 Vissim Forecast Model Zone Map	11
Figure 8-1 Average AM Delay	15
Figure 8-2 Base AM Average Speeds	15
Figure 8-3 2036 AM Do Minimum Speeds	16
Figure 8-4 2036 AM Do Something Speeds	16
Figure 8-5 2036 AM Do Something with Mitigation Speeds	17
Figure 8-6 Coltishall Routes	17
Figure 8-7 Journey Time Route 1 – Northbound	18
Figure 8-8 Journey Time Route 1 – Southbound	18
Figure 8-9 Journey Time Route 2 – Eastbound	19
Figure 8-10 Journey Time Route 2 – Westbound	19
Figure 8-11 Average PM Delay	20
Figure 8-12 Base PM Speeds	21
Figure 8-13 2036 PM Do Minimum Speeds	21
Figure 8-14 2036 PM Do Something Speeds	22
Figure 8-15 2036 PM Do Something with Mitigation Speeds	22
Figure 8-16 Journey Time Route 1 – Northbound	23
Figure 8-17 Journey Time Route 1 – Southbound	23
Figure 8-18 Journey Time Route 2 – Eastbound	24
Figure 8-19 Journey Time Route 2 – Westbound	24
Figure 9-1 Key locations in Coltishall	25
Figure 9-2 Queues in metres and delay in seconds - AM peak	26
Figure 9-3 Queues in metres and delay in seconds - PM peak	27
Figure 9-4 Queues in metres and delay in seconds - AM peak	28
Figure 9-5 Queues in metres and delay in seconds - PM peak	29
Figure 9-6 Queues in metres and delay in seconds - AM peak	30
Figure 9-7 Queues in metres and delay in seconds - PM peak	31
Figure 9-8 Queues in metres and delay in seconds - AM peak	32
Figure 9-9 Queues in metres and delay in seconds - PM peak	33

Tables

Table 5-1 Forecast Scenarios	8
Table 6-1 Growth Factors	11
Table 6-2 WUE Development Demand	12
Table 10-1 2036 AM Forecast Demand	35
Table 10-2 2036 PM Forecast Demand	35

1. Introduction

Background

- 1.1 ESCO Developments, Flagship Housing Group and Lovell Partnerships ('The Client Group') have commissioned AECOM to develop Vissim forecast models of the village of Coltishall to assess the future operation of the road network and the potential impact of the North Walsham Western Urban Extension (NWWUE).
- 1.2 The Vissim models have been developed for the 2036 year to assess the impact of the NWWUE development and predict the future traffic conditions in the model area. The growth in traffic demand and the additional demand generated by the NWWUE has been calculated in line with the Transport Assessment (TA) developed by AECOM.
- 1.3 This Forecast Modelling Report documents the development of the models from the base year scenario and presents the results of the future year assessments.

Base Vissim Model

- 1.4 The 2022 Vissim Base model for Coltishall has been used as a starting point to develop the forecast scenarios. AECOM developed and validated the Vissim Base model in late 2022.
- 1.5 The Base model was successfully calibrated and validated to replicate the existing operation during the traffic surveys, for the Coltishall modelled area, as shown in Figure 1-1. Further details regarding the Base model operation and the calibration and validation results can be found in the Vissim Local Model Validation Report (LMVR) for Coltishall.

1.6 The forecast year models have been developed for the 2036 forecast year. The models were developed for the Weekday AM and PM peak hours, defined as 07:45 – 08:45 and 16:30 – 17:30. Fifteen-minute warmup and cool-down periods have also been modelled to saturate the network with traffic, before the evaluated peak hour, and allow journeys to complete after the peak hour.

Model Purpose

- 1.7 The forecast models have been used to assess the operation of the network in 2036 in line with the forecast assumptions contained in the Transport Assessment for the NWWUE. Three different scenarios: 'Do Minimum', 'Do Something', and 'Do Something with Mitigation' have been developed for the 2036 forecast year. Definition of these scenarios and the changes they include from the base modelling can be found in Table 2-1.
- 1.8 The operation of the Do Minimum model was used as a benchmark to assess the impact of the trips generated by the NWWUE which were included in the Do Something scenarios.

Report Structure

- 1.9 The remainder of the report is structured as follows:
 - Section 2 outlines the development of the forecast models and scenarios that have been tested;
 - Section 3 describes the demand development methodology for the future year;
 - Section 4 describes the assignment methodology;
 - Section 5 presents and analyses the forecast modelling results;
 - Section 6 presents and analyses the operation of the key areas; and
 - Section 7 provides a summary and concludes the forecast modelling.

2. Forecast Model Development

Overview

- 2.1 The Coltishall forecast models were coded using the same version of Vissim 21.00-12 (64-bit) used to develop the 2022 Base models. This section outlines the changes made to the Base models to build the forecast models.
- 2.2 Three forecast model scenarios were developed:
 - 2036 'Do Minimum' model for AM and PM peak periods;
 - 2036 'Do Something' model for AM and PM peak periods; and
 - 2036 'Do Something with Mitigation' model for AM and PM peak periods.
- 2.3 The networks and demand flows used for each of the scenarios are set out in Table 2-1 below.

Scenario	Network	Demand
2036 Do Minimum	Base Model network	2022 Base * 2022-2036 Growth Factor
2036 Do Something	Base Model network	2036 Do Minimum + NWWUE 2036 Demand
2036 Do Something with Mitigation	Base Model network + Right-turn lane on Norwich Road	2036 Do Minimum + NWWUE 2036 Demand

+ Removal of on-street parking on High Street

Network Coding

- 2.4 There are no proposed changes to the network in the 2036 Do Minimum and Do Something scenarios, so all modelling features such as the desired speed decisions, reduced speed areas, public transport and priority rules remain consistent with the Base models.
- 2.5 The Do Something with Mitigation scenario includes a network change along B1150 Norwich Road, where a 20-metre right turn pocket is introduced to avoid right turners to the B1354 Church Street blocking northbound traffic on B1150 Norwich Road. The general layout of this infrastructure change can be seen in Figure 2-1 below.

Figure 2-1 B1150 Norwich Road Proposed Infrastructure Change Layout

2.6 The Do Something with Mitigation scenario also includes removal of on-street parking along High Street in the PM peak. The PM base model includes a section of carriageway where traffic cannot pass in both directions at the same time, to replicate observed behaviour caused by the on street parking. This is not included in the AM peak base year as this behaviour/ parking was not observed, with traffic flowing freely along this section. The presence of parked cars can be seen in Figure 2-2, in an image taken from Google StreetView. This image shows that cars are parked on both sides of the street, which limits the road space available for vehicles to pass. In addition, Figure 2-3 shows a still taken from the in-vehicle footage used to survey journey times in the PM period, which shows how parked cars impede the free flow of traffic in both directions.

Figure 2-2 Parked cars on High Street

Figure 2-3 PM queuing on High Street, from floating car footage

2.7 It should be noted that the links at the edges of the forecast models have been extended to allow the models to capture the full extent of longer queues caused by the increased traffic volumes in future years. These are only theoretical extensions, so the full extent of the delay is reported in the results, however, this does not represent any change to the modelled area.

3. Future Year Demand

Introduction

3.1 The forecast demand included in the Vissim models has been derived from the Transport Assessment (TA) developed by AECOM.

Zoning

- 3.2 Since the forecast models do not include any significant network changes from the base models, the zoning system developed for the Vissim Base models remains unchanged in the forecast scenarios.
- 3.3 A map of the zones from the forecast scenarios has been reproduced below in Figure 3-1.

Figure 3-1 Vissim Forecast Model Zone Map

Demand Methodology

- 3.4 The forecast Vissim demand matrices were derived using the growth factors and the trip distribution from the TA developed by AECOM. A complete list of the development demand matrices can be found in Appendix A.
- 3.5 Table 3-1 shows the growth factors derived from the Trip End Model Presentation Program (TEMPro) for each forecast year. These have been taken from the TA. These growth factors were applied to the base model demand matrices to uplift traffic volumes for the Do Minimum scenarios.

Table 3-1 Growth Factors

Vehicle Type	2036 AM	2036 PM
Car	1.084	1.080
LGV	1.084	1.080
HGV	1.050	1.050

3.6 The NWWUE trip generation and trip distribution assumptions included in the TA have been used to derive the number of additional trips and routes through Coltishall associated with the NWWUE. Table 3-2 details the additional development-related trips included in the Do Something and Do Something with Mitigation models which would travel through Coltishall on their journey to and from the development. Full details of the forecast demand changes can be found in Appendix A.

Table 3-2 WUE Development Demand

Development Demand	2036 AM	2036 PM				
Car / LGV	260	251				
HGV	0	0				

- 3.7 It should be noted that the development trip totals were provided split into two vehicle types: Cars/Light Good Vehicles (LGVs) and Heavy Goods Vehicles (HGVs). However, the Vissim models categorise Cars and LGVs as separate vehicle types. To account for this, Car and LGV proportions were calculated from the base matrix and used to split the development demand.
- 3.8 The development of additional demand from Zone 4 to itself included in the figures provided by the TA was manually reduced to 0 in the Vissim model. These trips were determined to be U-turns that would realistically occur outside the modelled area.
- 3.9 The absolute demand changes for each Origin-Destination (OD) pair were applied by vehicle class (Cars, LGVs and HGVs) to the base peak hour matrices from the Vissim base model to develop the Forecast demand matrices.
- 3.10 The forecast peak hour matrices were profiled into 15-minute periods using the same profiles used in the Vissim base model matrices to develop each 15-minute matrix, creating six matrices for each vehicle type.

4. Model Assignment and Evaluation

- 4.1 The assignment methodology used in the forecast models has been kept consistent with the base models and as set out in the LMVR.
- 4.2 The evaluation results are based on the average of 20 simulation runs with different random seeds. Different random seeds randomise the release of vehicles into the network, resulting in a different chain of events, replicating daily variability.

5. Model Results

Introduction

- 5.1 This section presents the analysis of results for the Base, Do Minimum, Do Something, and Do Something with Mitigation forecast scenarios. The results were extracted for the following models:
 - Base (2022) AM and PM peak hours;
 - Do Minimum (2036) AM and PM peak hours;
 - Do Something (2036) AM and PM peak hours; and
 - Do Something with Mitigation (2036) AM and PM peak hours.
- 5.2 The analysis in the following section has been divided into the AM and PM peak hours which have unique characteristics. A detailed analysis of the critical areas in the network is provided in Section 6.

AM Results

5.3 This section presents results for the full modelled network in the AM period and includes an analysis of average delay, plots of average speeds and journey times within the modelled area.

Network Performance – AM Peak

5.4 The Network Performance results and average speed plots have been extracted from the models to assess the operation of the overall network. These results provide the overall delays for each scenario to enable comparison of the performance of the network in each scenario.

Average Delay

- 5.5 Figure 5-1 shows the average delay per vehicle within the network for the four scenarios for the AM peak hour.
- 5.6 The graph shows that there is a large increase in average delay per vehicle in the Do Minimum, Do Something, and Do Something with Mitigation scenarios, when compared to the base scenario. The Do Minimum scenario increases to an average of 118 seconds per vehicle from 84 seconds per vehicle in the Base. While the Do Something scenario has the greatest average delay, increasing to 236 seconds per vehicle. However, when the mitigation is in place, the average delay is reduced to 141 seconds per vehicle, so the mitigation is predicted to offset most of the impact of the additional NWWUE trips, so the development would only increase delay by 23 seconds on average.

Figure 5-1 Average AM Delay

Average Speed Plots

- 5.7 The average speed results have been plotted on the modelled network for the AM Base and the three AM forecast scenarios and these are shown in Figure 5-2 through to Figure 5-5.
- 5.8 The increase in NWWUE demand included in the Do Something scenario increases queues through Colitshall, as shown in Figure 5-4. A significant proportion of this congestion originates from the right turn from Norwich Road to the B1354, just before the garage; the increase in southbound traffic volumes significantly reduces the gaps available for right-turning vehicles, blocking the eastbound and northbound movements. The speeds are higher in the Do Something with Mitigation scenario, due to the provision of a right-turn pocket, allowing traffic to flow more freely on the B1150 Norwich Road northbound.

Figure 5-2 Base AM Average Speeds

Figure 5-4 2036 AM Do Something Speeds

Figure 5-5 2036 AM Do Something with Mitigation Speeds

Journey Time Results – AM Peak

5.9 Journey time data has been extracted for the forecast model for the two journey time routes which were validated in the base model. The results have been used to compare delays across the forecast scenarios for the AM peak hour. Figure 5-6 shows the two journey time routes defined within the model area.

Figure 5-6 Coltishall Routes

5.10 Journey Time Route (JTR) 1 is along the B1150 Station Road and High Street to the junction of the B1150 and B1354 to the south of the Petrol Filling Station (PFS) in the centre of Coltishall. Journey Time Route

(JTR) 2 extends along the B1150 Norwich Road from the junction with Green Lane, over the river bridge and along the B1354 to the junctions with Kings Road.

- 5.11 Figure 5-7 to Figure 5-10 show the modelled results for the Base and all forecast scenarios in the AM peak hour, for the defined routes.
- 5.12 The journey time results for the forecast models are broadly similar for all routes when compared to the Base. For the JTR 1 in the northbound direction, the Do Minimum, Do Something and Do Something with Mitigation scenarios have similar journey times to the Base in both directions, although the Do Something journey times are slightly longer overall.
- 5.13 The journey times for JTR 2 westbound are also broadly similar for all forecast scenarios, although there is an increase of just under 20 seconds in the Do Something scenarios.
- 5.14 The journey times on JTR 2 eastbound are consistent with the average speed analysis above, with significant increase in journey times in the Do Something scenario, relative to the Do Minimum due to blocking back from the right turn into the B1354, which results in longer queues. However, it can be seen than the provision of the right turn pocket in the Do Something with Mitigation scenario, significantly reduces journey times, bringing them down to a similar level to the Do Minimum scenario.

Figure 5-7 Journey Time Route 1 – Northbound

Figure 5-8 Journey Time Route 1 – Southbound

Figure 5-9 Journey Time Route 2 – Eastbound

Figure 5-10 Journey Time Route 2 – Westbound

PM Results

5.15 This section presents the network performance results for the modelled network in the PM peak hour. It includes an analysis of average delay, average speed results and journey times within the modelled area as a whole.

PM – Overall Network Performance

5.16 The Network Performance results and average speed plots have been extracted from the model to assess the operation of the entire network. These results provide an overview of the delays in each scenario for comparison.

Average Delay

- 5.17 Figure 5-13 shows the average delay per vehicle within the network across the four PM scenarios.
- 5.18 The graph shows there is a significant predicted increase in delay in the Do Minimum scenario relative to the Base year, with delay increasing from 48 seconds per vehicle to 145 seconds per vehicle. When the additional NWWUE trips are added this delay increases to 321 seconds per vehicle. The main causes of this additional delay is queuing at the parked cars (observed in the PM scenario and modelled in the base year) which allow only one direction of traffic to pass at a time.
- 5.19 The average delay per vehicle is reduced to 137 seconds per vehicle in the Do Something with Mitigation scenario, showing that the proposed mitigation offsets the impact of the development traffic in the PM peak, with average delay below the level in the Do Minimum.

Figure 5-11 Average PM Delay

Average Speed Plots

- 5.20 The average speed results for the Base PM models and the three forecast scenarios are shown in Figure 5-12 to Figure 5-15 below.
- 5.21 The speed plots show how the additional demand added in the Do Minimum, Do Something and Do Something with Mitigation scenarios increases the queue lengths (red and dark red areas) in the network, especially along the High Street area.
- 5.22 The results show how the additional demand added to each scenario gradually increases the queue lengths (red and dark red areas) in the network, especially along the High Street area, as shown in Figure 5-14. This queue along the B1150 is caused by a section of the High Street effectively being a single lane due to on-street parking in the PM peak. Furthermore, over 90% of the NWWUE development trips that travel through Coltishall do so via the High Street, resulting in queues building up along the B1150.
- 5.23 It should be noted that the operation of this movement was highlighted as a capacity pinch point in the base model. The operation and cooperative behaviour along the one-way section of the High Street is dependent on the arrival patterns and demand levels in northbound and southbound directions.
- 5.24 The Do Something with Mitigation scenario assumes that parking restrictions will avoid vehicles parking on street in this short section of the High Street which has such a significant impact on two-way flow. The models predict that the queues and delay along High Street would be reduced significantly, increasing the speeds of vehicles along that route.

Figure 5-13 2036 PM Do Minimum Speeds

Figure 5-15 2036 PM Do Something with Mitigation Speeds

Journey Time Results – PM Peak

- 5.25 Modelled journey times have been extracted for the two routes which were validated in the base model and compared across scenarios. These are shown in Figure 5-6.
- 5.26 Figure 5-16 to Figure 5-19 show the modelled results for all the forecast scenarios along the base year journey time routes in the model.
- 5.27 The journey time results show that the operation of High Street, where traffic cannot pass in both directions at once at the parked cars, has an impact on the results for Journey Time Route (JTR) 1

(northbound and southbound) in the Do Minimum and Do Something scenarios, with the delay increasing as traffic volumes increase.

- 5.28 In the northbound direction, the journey time is 103 seconds in the Do Minimum and 60 seconds higher in the Do Something. In the Do Something with Mitigation scenario, where the on-street parking on the High Street is restricted, the journey time is reduced and is 17 seconds faster than the Do Minimum.
- 5.29 Similarly, in the southbound direction, the 2036 Do Minimum results show that it will take 161 seconds to travel along the full route. The journey times along this route are predicted to increase significantly in the Do Something scenario, as a result of the additional development demand. However, the model results show that the two way operation due to removal of parked cars in the Do Something with Mitigation scenario will completely offset the development impact, reducing the journey times along this route to only 67 seconds.
- 5.30 For JTR 2 eastbound the removal of on-street parking also has a positive effect, reducing the Do Something with Mitigation journey time to a similar level as the Do Minimum scenario.

Figure 5-16 Journey Time Route 1 – Northbound

Figure 5-17 Journey Time Route 1 – Southbound

Figure 5-18 Journey Time Route 2 – Eastbound

Figure 5-19 Journey Time Route 2 – Westbound

6. Junction Analysis

Introduction

6.1 Figure 6-1 below shows the key junctions/ locations identified from the survey data/ observations in the model area that most impact network operation.

Figure 6-1 Key locations in Coltishall

- 6.2 The key locations are defined as follows:
 - 1.Rectory Road/ B1150 roundabout;
 - 2. High Street/ B1354 gyratory at the Petrol Filling Station;
 - 3. High Street at the war memorial; and
 - 4. High Street / Great Hautbois Road priority junction.
- 6.3 These locations have been analysed individually in the models to extract queue and delay results for the Do Minimum, Do Something and Do Something with Mitigation scenarios, to provide an assessment of the NWWUE development impact.
- 6.4 It should be noted that the operation of some of these critical locations depends on variable factors such as on-street parking and courtesy/give-way behaviours, which have been modelled and calibrated to observed queuing patterns/ levels of delay.

Rectory Road / Norwich Road Roundabout (1)

- 6.5 Figure 6-2 shows the queues and delays at the AM peak hour at the Rectory Road / Norwich Road Roundabout. The queue results are set out in the top junction layout and the delays are in the bottom junction layout.
- 6.6 The model results show that the NWWUE development demand included in the Do Something scenario results in a small increase in queues and delays at the junction.
- 6.7 It is worth noting that this delay and queue have been analysed with this junction operating in isolation the full model results show that the queue from B1150 Norwich Road at the gyratory would impact this junction in some scenarios.

Figure 6-2 Queues in metres and delay in seconds - AM peak

- 6.8 Figure 6-3 shows the queues and delays in the PM peak hour at the Rectory Road / Norwich Road miniroundabout.
- 6.9 The model results show that the NWWUE development demand included in the Do Something scenario results in approximately 30 seconds more delay on Norwich Road northbound. The delay increase is also reflected in a longer section of slow-moving traffic approaching the roundabout, approximately 100 metres in length. The queues and delay in the Do Something with Mitigation scenario are similar.

Figure 6-3 Queues in metres and delay in seconds - PM peak

Norwich Road and B1354 Gyratory (PFS) (2)

- 6.10 Figure 6-4 shows the queues and delays at the gyratory between Norwich Road and B1354 in the AM peak hour.
- 6.11 The model results show that the NWWUE development trips in the Do Something scenario result in approximately 80 seconds more delay on the eastbound approach to the gyratory. The increase in delay is also reflected in longer queues, approximately 390 metres in length, on the eastbound approach.
- 6.12 The junction analysis results show that the right turn from Norwich Road to the B1354, just before the Petrol Filling Station (PFS), is over capacity with the Do Something forecast trips. The additional southbound traffic volumes in this scenario result in fewer gaps for right turners, so right turners block vehicles travelling ahead.
- 6.13 The results for Do Something with Mitigation scenario, where a right turn pocket is provided, has a similar queue length and delay as the Do Minimum scenario along B1150 Norwich Road eastbound, effectively mitigating the impacts of the NWWUE development.
- 6.14 There are no significant increases or reductions in delay across the other arms.

Figure 6-4 Queues in metres and delay in seconds - AM peak

- 6.15 Figure 6-5 shows the queues and delays at the gyratory between Norwich Road and B1354 (PFS) in the PM peak hour.
- 6.16 The model results show that the NWWUE development demand in the Do Something scenario increases queues and delays along B1150 Norwich Road eastbound by approximately 150 metres and 40 seconds respectively. The Do Something with Mitigation scenario, however, reduces the queues and delays to lower levels that in the Do Minimum scenario; the mitigations (right turn pocket and removal of on-street parking o the High Street), effectively mitigate the impacts of both the NWWUE and the projected growth in the area.

Figure 6-5 Queues in metres and delay in seconds - PM peak

High Street (3)

- 6.17 Figure 6-6 shows the queues and delays at High Street northbound and southbound in the AM peak hour.
- 6.18 There are no queues and no significant delays in any scenarios, which is consistent with the Base model where there are no vehicles parked on-street in the AM causing vehicles to give way.

Figure 6-6 Queues in metres and delay in seconds - AM peak

6.19 Figure 6-7 shows the queues and delays on the High Street in the PM peak hour.

The Do Minimum model results show a southbound queue of approximately 120 metres long and 108 seconds of delay caused by the section where two way flow isn't possible, which is caused by the on-street parking.

- 6.20 The Do Something scenario shows a significant increase in the queues and delays due to the NWWUE development demand along this route. It should be noted that due to the cooperative nature of the calibrated driving behaviour in the model where parking limits capacity, the increase in queue lengths is not directly related to the direction of the flow.
- 6.21 The Do Something with Mitigation scenario, which removes the on-street parking on High Street, removes all restrictions along the road therefore allowing traffic to flow freely without having to give way. This means that there are average queue lengths of one metre and an average delay of 14 seconds along the southbound movement.

Figure 6-7 Queues in metres and delay in seconds - PM peak

High St / Gt Hautbois Rd / Station Rd Junction (4)

- 6.22 Figure 6-8 shows the queues and delays at the High Street / Great Hautbois Road / Station Road priority junction in the AM peak hour.
- 6.23 There are no average queues along High Street or Great Hautbois Road and an insignificant average queue length on Station Road in any of the forecast scenarios. There is a slight increase in delay and queue lengths from the Do Minimum to Do Something scenario along the Station Road arm, but this junction is predicted to operate within capacity when assessed in isolation.

Figure 6-8 Queues in metres and delay in seconds - AM peak

6.24 Figure 6-9 shows the queues and delays on the High Street in the PM peak hour for the different scenarios tested. There is a slight increase in delay on Great Hautbois Road, however the junction operates within capacity when assessed in isolation.

Figure 6-9 Queues in metres and delay in seconds - PM peak

7. Conclusions

- 7.1 The 2036 forecast Vissim models were developed to assess future network conditions and the impact of the North Walsham Western Urban Extension (NWWUE) development.
- 7.2 The predicted demand growth and the additional demand generated by the NWWUE taken from the Transport Assessment (TA) was added to the 2022 Vissim Base model demand to calculate the Vissim forecast demand for all the modelled scenarios.
- 7.3 The analysis of the modelling results has highlighted two key locations in Coltishall where increased queuing and delay are predicted in 2036 withinout the NWWUE development (the Do Minimum scenario). The models predict that these queues and delays will be significantly worsened as a result of the increase in traffic from the NWWUE.
- 7.4 Mitigations were identified and tested in the Do Something with Mitigation scenario: provision of a right turn pocket into the B1354 from Norwich Road to avoid blocking of the Norwich Road and removal of on street parking on a short stretch of the High Street to allow two-way movement. The models predict that almost all the development impact observed in the Do Something scenario in the AM and PM peaks would be mitigated for and that the performance of the network through Coltishall would be similar to the Do Minimum scenario with the mitigations in place.

Appendix A – Demand Development Matrices

Table 7-1 2036 AM Forecast Demand

Zone	1	2	3	4	5	6	7	8	9	Sum
1				0.6						0.6
2				2.5						2.5
3										0.0
4	0.4	0.7		2.8		1.5			188.3	193.7
5										0.0
6				1.1						1.1
7				0.6						0.6
8										0.0
9				61.4						61.4
Sum	0.4	0.7	0.0	69.0	0.0	1.5	0.0	0.0	188.3	

Table 7-2 2036 PM Forecast Demand

Zone	1	2	3	4	5	6	7	8	9	Sum
1				0.4						0.4
2				0.6						0.6
3										0.0
4	0.7	2.9		2.9		1.3			71.8	79.6
5										0.0
6				1.4						1.4
7				0.4						0.4
8										0.0
9				168.6						168.6
Sum	0.7	2.9	0.0	174.3	0.0	1.3	0.0	0.0	71.8	

aecom.com

ecom.com

Appendix F – Proposals and Design Drawings

tame:AAProjects/60685223 - North Watsham WUE\900_CAD_GIS\960_GIS\230822_NW WUE Propos

	THIS DRAWING IS TO BE USED ONLY FOR THE PURI ISSUE THAT IT WAS ISSUED FOR AND IS SUBJECT TO A	POSE OF MENDMENT
	LEGEND	
	Proposed Improvem	nent
1 × 1		
0		
To Wroxham		
B1354		
H.		
	Copyright Contains Ordnance Survey Data © Crown Co and database right 2023	opyright
-		
	FLAGSHIP HOUSING GRC	UP
	LOVELL PARTNERSHIP	S
1	NORTH WALSHAM WESTE	RN
	URBAN EXTENSION	
	Drawing Title	
	PROPOSED IMPROVEMEN	ITS
	COLTISHALL	
	Drawn Checked Approved Date	
	BS TJ BC 23/0 AECOM Internal Project No. Scale @ A3	08/2023
	6U685223 1:5,000 THIS DOCUMENT HAS BEEN PREPARED PURSUANT TO AND SUBJ TERMS OF AFCOMS APPOINTMENT BY ITS OF IGHT ACCOMMONSTRATE	ECT TO THE
	FOR ANY USE OF THIS DOCUMENT OTHER THAN BY ITS CILENI. ACCOM ACCEPT FOR ANY USE OF THIS DOCUMENT OTHER THAN BY ITS ORIGINAL FOLLOWING ACCOM'S EXPRESS AGREEMENT TO SUCH USE, AND O PURPOSES FOR WHICH IT WAS PREPARED AND PROVIDI	CLIENT OR ONLY FOR THE D.
	AECOM Cavell House St Crispins Road	
	Norwich NR3 1YE AECO	M
	Drawing Number	Rev
n Copyright and database right 2020	FIGURE A.003	02

EDGE OF LANE MARKINGS TO GUIDE TALL HGV's THROUGH THE BRIDGE AT ITS HIGHEST POINT (NO AYLSHAMROAD PHYSICAL CONSTRAINT AS REQUIREMENTS TO BE ABLE TO PASS A BROKEN DOWN VEHICLE TO BE RETAINED) **NEW TOUCAN** CROSSING * Ht PPP+LPAK. ¢¶ ¥ ധ .2M **NEW ONE-WAY** NEW TRAFFIC SHUTTLE SIGNALS CONTROL UNDER RAIL BRIDGE SIGNALS EXISTING NEW 1.5M MIN WIDE PATH LEADING TO 20MPH LIMIT FOOTWAY UNDER WEAVERS WAY ON PARK LANE BRIDGE KEY EXISTING FOOTWAY PROPOSED FOOTWAY PROPOSED TURNING HEAD PROPOSED ONE WAY / ALTERNATIVE SURFACE TREATMENT PROPOSED TOUCAN CROSSINGS EXISTING ROAD MARKING - PROPOSED ROAD MARKING EXISTING PARKING RESTRICTION TO REMAIN EXISTING PARKING RESTRICTION MARKING TO BE REMOVED PROPOSED PARKING RESTRICTION MARKING PROPOSED KERB LINE PROPOSED SIGNAL PROPOSED TACTILE PAVING

PROJECT North Walsham Western Urban Extension

CLIENT

Esco Developments Flagship Group Lovel

CONSULTANT

AECOM CAVELL HOUSE, STANNARD PLACE ST CRISPINS ROAD NORWICH, NR3 1YE, UK www.aecom.com

NOTES

LEGEND

SUITABILITY

S0 WORK IN PROGRESS

ISSUE/REVISION

P03	05/09/2023	FORWARD VISIBILITY ON PARK RD ADDED
P02	07/08/2023	AMENDMENTS TO LAYOUT
P01	25/07/2023	LAYOUT FOR DISCUSSION
I/R	DATE	DESCRIPTION

KEY PLAN

PROJECT NUMBER

60685223

SHEET TITLE

SKEYTON NEW ROAD JUNCTION DETAIL AND VISIBILITY LINES AT AYLSHAM ROAD END

SHEET NUMBER

60685223-ACM-XX-XX-DR-CE-0154

PROJECT North Walsham Western Urban Extension

CLIENT

Esco Developments Flagship Group Lovel

CONSULTANT

AECOM CAVELL HOUSE, STANNARD PLACE ST CRISPINS ROAD NORWICH, NR3 1YE, UK www.aecom.com

NOTES

LEGEND

SUITABILITY

S0 WORK IN PROGRESS

ISSUE/REVISION

P01	02/08/2023	LAYOUT FOR DISCUSSION
I/R	DATE	DESCRIPTION
		·

KEY PLAN

PROJECT

North Walsham Western Urban Extension

CLIENT

Esco Developments Flagship Group Lovell

CONSULTANT

AECOM ALDGATE TOWER 2 LEMAN STREET LONDON, E1 8FA, UK www.aecom.com

NOTES

KEY

New Kerb Line

Boundaries Created BY NCC - Received in pdf format: 29 Aug 2023

Boundary recreated IN CAD BY DJB 31/08/2023:

Public Highway Boundary

Public Right of Way Boundary

SUITABILITY

WORK IN PROGRESS S0

ISSUE/REVISION CHECKEL

	VVIN.	ONEORED.	ATTROVED:
P04	31/08/2023	THRO' LANES 3.2M V	VIDE, HIGHWAY BOUNDARIES ADDED
P03	09/08/2023	KEEP CLEAR / SLOW	/ MARKINGS ADDED
P02	07/08/2023	LAYOUT REV'D TO S	UIT TOPO SURVEY
P01	26/06/2023	ISSUED FOR INFOR	MATION
I/R	DATE	DESCRIPTION	

KEY PLAN

PROJECT NUMBER

60685223 SHEET TITLE

PROPOSED ROAD LAYOUT

60685223-ACM-XX-XX-DR-CE-0130

REV: P04

B1150 CHURCH ST COLTISHALL

SHEET 1 OF 2

SHEET NUMBER

SCALE: 1:500 @A1

PROJECT

North Walsham Western Urban Extension

CLIENT

OWNER/CLIENT

Esco Developments Flagship Group Lovell

CONSULTANT

AECOM ALDGATE TOWER 2 LEMAN STREET LONDON, E1 8FA, UK www.aecom.com

NOTES

SUITABILITY

WORK IN PROGRESS S0

ISSUE/REVISION

07/08/2023	ISSUED FOR INFORM	MATION
DATE	DESCRIPTION	
	07/08/2023 DATE	07/08/2023 ISSUED FOR INFORM DATE DESCRIPTION

KEY PLAN

PROJECT NUMBER

60685223

SHEET TITLE

NORTH WALSHAM ROAD COLTISHALL PROPOSED BUS STOP

SHEET NUMBER

60685223-ACM-XX-XX-DR-CE-0133				
SCALE: 1:500 @A1	REV : P01			

Appendix G – Stage 1 Road Safety Audit Report and Designers Response

NORTH WALSHAM WESTERN EXTENSION: **B1150 NORWICH RD CYCLE IMPROVEMENTS & AYLSHAM RD SHUTTLE WORKING**

STAGE 1 SAFETY AUDIT

REPORT REF: B1150/025 August 2023

Report Prepared for: AECOM

Report Author: Nevil Calder BSc(Hons) CEng MICE MCIHT MSoRSA NH Cert Comp

Report Status:

Issue	Status	Purpose	Name/Signature	Date
1	Stage <mark>1</mark> Safety Audit Report	Client issue	Nevil Calder	22/08/23
2	Designer's Response	Designer response to Safety Issues raised	Bevin Carey Deun Cony	29/09/23
Choose an item.	Choose an item.	Choose an item.	·····	

INTRODUCTION

This report contains the results of a Stage 1 Safety Audit carried out on the above scheme. The Audit was carried out at the request of AECOM on behalf of Norfolk County Council Growth and Development. A formal Audit Brief was not provided.

The Audit Team is independent of the project design team and has had no involvement with the project. The Audit Team membership was as follows:-Nevil Calder BSc(Hons) CEng MICE, MCIHT, MSoRSA Principal Engineer (Audit Team Leader) Highway Safety

Kevin Allen BEng (Hons), I Eng, MCIHT, MSoRSA (Audit Team Member)

Project Engineer Network Safety + Sustainability Norfolk County Council

WSP

The Audit took place via online conferencing on 16 August 2023. The audit comprised an examination of the supplied documentation (see Appendix A) and a site inspection by the Audit Team Leader on 22 August 2023 at 10:20 which lasted around 30 minutes. During the site visit the weather was sunny and the road surface dry. Traffic flows were moderate and generally free flowing.

The terms of reference are as described in Community and Environmental Services Highways Service Manual Procedure SP03-07-P01. The Auditors have examined and reported only on the road safety implications of the scheme within the main report.

The proposal involves traffic management improvements in North Walsham in connection with the western urban extension of the town. The audited scheme comprises provision of shared-use foot/cycleway on approach to the railway station on Norwich Rd, together with introduction of signalised shuttle working on an existing narrow section of Aylsham Rd and foot/cycleway provision. The latter also involves a short length of one-way restriction on Skeyton New Road at its junction with Aylsham Rd.

The auditors have reviewed the five year (to end Mar 2023) collision record for the location. During this period there were 4 personal injury collisions (1 serious, 3 slight) recorded in vicinity of the Norwich Rd scheme but they appear to have no bearing on the proposals. There were no recorded collisions in vicinity of the Aylsham Rd proposals.

A comments section has been included in Appendix B. The issues noted are not necessarily safety issues. They relate either to wider network implications, safety issues identified outside the scope of the audited scheme or suitability of a particular design choice.

ITEMS RAISED AT PREVIOUS AUDIT

The Audit Team are not aware of any previous audit of this scheme.

ITEMS RAISED AT THIS STAGE 1 AUDIT

1.0 General

1.1 Problem – vehicle collisions with NMUs

Location – Aylsham Rd proposed signalised NMU crossings

The proposed location of 'toucan style' crossings within the signalised shuttle length is not one the Audit Team has met before. While the indicative signal staging is simple, the inter-green timings and mid-shuttle vehicle detection are not clear. The location of the signal controlled NMU crossings some 50m after the vehicle stop lines will require sufficient time for vehicles to clear the crossings before NMUs can safely receive a green signal. The Audit Team wonder whether such long clearance times might lead to driver adaptation? Also, since the vehicle stop lines are remote from the signal crossings; would a driver who overruns the start of vehicle red or is then delayed by some unforeseen event, subsequently stop 50m later at the NMU crossing's red signal without a further stop line? Any failure to stop would pose a risk of vehicle/NMU collision

Recommendation – that proposals for vehicle detection, inter-green timings and stop line location are subject to early design discussion with traffic signals specialists to ensure safe operation.

Designer's Response:

The vehicle detection, inter-green timings and stop line locations are to be implemented where appropriate at as part of the next stage of design.

Network Management Decision:

2.0 Alignment

2.1 Problem – vehicle/cycle overtake collisions

Location - Aylsham Rd under the rail bridge

The length of shuttle working is such that some drivers following an on-road cyclist may be tempted to overtake within it. The Audit Team note that proposed carriageway width under the rail bridge varies between 3.2m and approx. 4.5m. This could lead to driver misjudgement and inadequate safe overtaking clearance, resulting in collision.

Recommendation – that the carriageway width is regularised, avoiding tapering widths between 3.2 and 4.0m.

Designer's Response:

The carriageway width within the shuttle working length is to be reviewed once a Topo survey has been carried out, and the tapered width reduced in length to minimise the risk of collision between vehicles overtaking cyclists.

Edge of lane markings on the northern side of the carriageway are to be retained but realigned to achieve a clear width of 3.2m along the shuttle one way signalled working length and to guide high HGV's into the middle of the road when going under the arched rail bridge.

Network Management Decision:

2.2 Problem – tail-end collisions

Location – Park Lane into Aylsham Rd westbound

Traffic leaving the Park Lane gyratory into Aylsham Rd westbound may encounter stationary traffic at the proposed signals. A forward visibility splay of 25m is proposed here which is appropriate for speeds of 20mph. However the Audit Team consider that actual traffic speeds on this one-way un-calmed approach may be somewhat higher, leading to a risk of tail-end collision.

Recommendation – that the proposed visibility splay should be based on actual measured traffic speeds.

Designer's Response:

As suggested by the RSA1 comment above, a higher traffic speed of say 30mph would require a forward stopping sight distance of 43m. If the existing vegetation is adjacent to the railway embankment and retaining wall is trimmed back it may be possible to achieve the required 43m forward visibility. This would reduce down to approx 39m over a short distance where the existing bridge retaining wall would obstruct visibility. The exact position, length and height of the wall will require further survey work to establish achievable forward visibility although at present the visibility is greatly reduced by poorly maintained and overgrown vegetation.

North Walsham Western Extension: B1150 Norwich Rd & Aylsham Rd Shuttle Stage 1 Safety Audit

We also propose the introduction of a zebra crossing at the existing drop kerb and tactile paved crossing on Park Lane would provide priority for pedestrians over vehicles and also help reduce traffic speeds on the present 20mph speed restricted approach to Aylsham Road, whilst also providing a new facility to access the cycle route and the surgery on Park Lane.

Network Management Decision:

3.0 Junctions

3.1 Problem – junction collisions

Location – Skeyton New Road one-way plug

The short length of one-way southbound operation may leave it prone to abuse. This concern is exacerbated by lack of any carriageway width restriction on the northbound side. This could result in northbound drivers emerging at the junction in collision with other traffic.

Recommendation – that the one-way section of the junction is redesigned, perhaps with a western kerbline build-out, to better deter northbound abuse of the restriction.

Designer's Response:

The junction of Skeyton New Road with Aylsham Road has been reviewed and the western side build-out widened to allow for new 'No Entry' signs facing northbound traffic. It is also proposed that access only signage is adopted on either end of Skeyton New Road.

Network Management Decision:

4.0 Non-motorised Users

4.1 Problem – collisions between NMUs and access traffic

Location - Norwich Road - RS Timber access/rail station access

The proposed RS Timber access bellmouth appears to be unnecessarily wide, increasing pedestrian and cycle exposure when crossing it, while the refuge area

between this and the station access is insufficiently wide to shelter a crossing cyclist. This increases the risk of NMU collision with turning/exiting traffic.

Recommendation – that the accesses are redesigned to better protect NMUs crossing them.

Designer's Response:

Noted. Detailed design works will be undertaken in relation to the proposals in this location including a Topo survey and highway boundary information. Careful consideration of the needs of all users will be needed. Where possible the RS Timber Works access will be narrowed increasing the protected areas for pedestrians and cyclists.

Network Management Decision:

4.2 Problem – vehicle/pedestrian collisions

Location - Norwich Road rail station access junction

The proposal appears to perpetuate the existing situation where pedestrians accessing/exiting the rail station must share the access carriageway with vehicular traffic at the junction. This exposes them to risk of collision with turning traffic and is likely to be intimidating for some.

Recommendation – that a footway should extend at least around the bellmouth area to protect pedestrians until clear of the junction area.

Designer's Response:

The available width of the existing station access is limited by the entrance to RS Timber to the north east and existing railway station signs and cabinet equipment to the south west.

The entrance could be improved to provide a separate footway for pedestrians if the existing signs and above ground cabinet equipment were relocated, however it is assumed that these features are beyond the limits of the highway boundary, and as such would require the railway companies permission. There is a large level difference between the station access and the adjacent footpath which would mean that the station access would require regrading into the station parking area again beyond the highway boundary. See extract from the

proposed layout drawing 60685225-ACM-XX-XX-DR-CE-0155 below with a schematic alternate kerb layout showing a separate footway, this or similar options to be explored during detail design stage.

Network Management Decision:

5.0 Signs, Lighting and Markings

5.1 No comment

North Walsham Western Extension: B1150 Norwich Rd & Aylsham Rd Shuttle Stage 1 Safety Audit

6.0 Problem Location Plans

North Walsham Western Extension: B1150 Norwich Rd & Aylsham Rd Shuttle Stage 1 Safety Audit

AUDIT TEAM STATEMENT

We certify that this audit has been carried out in accordance with Norfolk County Council Community and Environmental Procedure SP03-07-P01

Signed (ATL) ...

Nyloalde

Nevil Calder

Dated

22 August 2023

_

Kevin Allen

Signed Dated

22 August 2023

K.J. Il

Template Version #11 09/14 KJA

APPENDIX A: Audit Brief

The following documents were submitted for this Road Safety Audit:

Document Ref.	Scale (if	Title
	applicable)	
60685223-ACM-XX-XX-DR-CE-0154 P02		Skeyton New Rd Junction Detail
60685223-ACM-XX-XX-DR-CE-0152 P02		Skeyton New Rd Visibility Lines
60685223-ACM-XX-XX-DR-CE-0153 P01		Skeyton New Rd Vehicle Turning Paths
60685223-ACM-XX-XX-DR-CE-0155 P01		Norwich Rd Cycle Provision
60685223-ACM-XX-XX-DR-CE-0156 P01		Norwich Rd Vehicle Turning Paths
Forecast Traffic Data		
5 yr road accident details		

No Departures from Standard were notified

APPENDIX B: Comments

C.1 The Audit Team note that visibility at the western end Skeyton New Rd is currently restricted by adjacent hedge and weed growth which has been allowed to encroach right up the carriageway edge. Although this is an existing situation, some increased use of the junction will arise from the proposed one-way plug at the other end of Skeyton New Rd. Discussion with the local highway authority is suggested with a view to remedial measures to improve visibility.

Designer's Response:

Accepted. This will be discussed with the Highway Authority as part of delivery of the works on Skeyton New Road at the next stage of design.

C.2 On Norwich Road the 'existing telephone call box' noted on the drawings at the station access no longer exists.

Designer's Response:

Noted

NORTH WALSHAM WESTERN EXTENSION: B1150 COLTISHALL TRAFFIC MANAGEMENT

STAGE 1 SAFETY AUDIT

REPORT REF: B1150/026 August 2023

Report Prepared for: AECOM

Report Author: Nevil Calder BSc(Hons) CEng MICE MCIHT MSoRSA NH Cert Comp

Report Status:

Issue	Status	Purpose	Name/Signature	Date
1	Stage <mark>1</mark> Safety Audit Report	Client issue	Nevil Calder	22/08/23
2	Designer's Response	Designer response to Safety Issues raised	Bevin Carey Deun Grey	27/09/23
Choose an item.	Choose an item.	Choose an item.		

INTRODUCTION

(Audit Team Member)

This report contains the results of a Stage 1 Safety Audit carried out on the above scheme. The Audit was carried out at the request of AECOM on behalf of Norfolk County Council Growth and Development. A formal Audit Brief was not provided.

The Audit Team is independent of the project design team and has had no involvement with the project. The Audit Team membership was as follows:-Nevil Calder BSc(Hons) CEng MICE, MCIHT, MSoRSA Principal Engineer (Audit Team Leader) Highway Safety

Kevin Allen BEng (Hons), I Eng, MCIHT, MSoRSA

Project Engineer Network Safety + Sustainability Norfolk County Council

WSP

The Audit took place via online conferencing on 16 August 2023. The audit comprised an examination of the supplied documentation (see Appendix A) and a site inspection by the Audit Team Leader on 22 August 2023 at 09:30 which lasted around 30 minutes. During the site visit the weather was sunny and the road surface dry. Traffic flows were moderate and generally free flowing. Speeds varied depending on traffic flow but were frequently observed to be above 20mph.

The terms of reference are as described in Community and Environmental Services Highways Service Manual Procedure SP03-07-P01. The Auditors have examined and reported only on the road safety implications of the scheme within the main report.

The proposal involves traffic management improvements in Coltishall in connection with the planned western urban extension of North Walsham. The audited scheme involves provision of a right turn lane at the junction of B1150 and B1354 including relocation of a pedestrian refuge, together with provision of bus stop markings on Church St approx. 100m to the north.

The auditors have reviewed the five-year (to end Mar 2023) collision record for the location. During this period there were 2 personal injury collisions (both slight) recorded in the vicinity of the scheme. One involved centreline crossover on the bend just north of the B1354 junction, reflecting the narrow carriageway there. The other occurred at the bridge to the west but appears anomalous, involving manoeuvring to give precedence to an emergency vehicle.

A comments section has been included in Appendix B. The issues noted are not necessarily safety issues. They relate either to wider network implications, safety issues identified outside the scope of the audited scheme or suitability of a particular design choice.

ITEMS RAISED AT PREVIOUS AUDIT

The Audit Team are not aware of any previous audit of this scheme.

ITEMS RAISED AT THIS STAGE 1 AUDIT

- 1.0 General
- 1.1 No comment

2.0 Alignment

2.1 Problem – kerb strikes/loss of control or head-on collisions

Location – B1150 westbound at proposed RTL

The RTL layout reduces the width of the westbound through-lane where it passes the western corner of the filing station. There is a low brick wall here immediately at the carriageway edge (see photo), raising concern over vehicle edge strikes with potential for loss of control. Alternatively, drivers' natural 'edge-shyness' may cause them to overrun the RTL resulting in head-on collision with an eastbound vehicle entering it.

Recommendation – that the westbound through-lane should be a minimum of 3.2m adjacent to the low brick wall of the filling station and 3m elsewhere. The swept paths

suggest that the proposed RTL might be shortened slightly at its eastern end to facilitate this.

Designer's Response:

The Westbound through lane width has been reviewed and the design adjusted to achieve the suggested 3.2m width adjacent to the low height wall on the boundary of the service station.

Network Management Decision:

2.2 Problem – kerb strikes/loss of control

Location - B1150 westbound at proposed refuge island

The proposal indicates a westbound through-lane width of only 3m between kerbs where it passes the refuge island. On a classified road this is considered inadequate (despite the 20mph speed limit), raising the risk of vehicle kerb strikes with potential for loss of control.

Recommendation – that the through-lanes adjacent to the refuge island should be a minimum of 3.2m between kerbs

Designer's Response:

The through lane widths adjacent to the proposed pedestrian refuge island have been increased to 3.2m as recommended by para 2.2 above.

To achieve 3.2m wide through lanes each side of the pedestrian refuge, the existing northern kerb line has been shifted northwards as indicated in the extract below. The revised drawing 60685223-ACM-XX-XX-DR-CE-0130-P04 also shows the recently acquired NCC Highway boundary details.

Network Management Decision:

- 3.0 Junctions
- 3.1 No comment

4.0 Non-motorised Users

- 4.1 No comment
- 5.0 Signs, Lighting and Markings
- 5.1 No comment

6.0 Problem Location Plan

AUDIT TEAM STATEMENT

We certify that this audit has been carried out in accordance with Norfolk County Council Community and Environmental Procedure SP03-07-P01

Signed (ATL) ...

NG Calde

Nevil Calder

Dated

22 August 2023

Kevin Allen

Signed Dated K.J. <u>41</u> 22 August 2023

Template Version #11 09/14 KJA

APPENDIX A: Audit Brief

The following documents were submitted for this Road Safety Audit:

Document Ref.	Scale	Title
	(if applicable)	
60685223-ACM-XX-XX-DR-CE-0130 P03	1:500	Proposed Road Layout (1 of 2)
60685223-ACM-XX-XX-DR-CE-0133 P01	1:500	Proposed Bus Stop
60685223-ACM-XX-XX-DR-CE-0131 P04	1:250	Vehicle Tracking (1 of 3)
60685223-ACM-XX-XX-DR-CE-0134 P03	1:250	Vehicle Tracking (2 of 3)
60685223-ACM-XX-XX-DR-CE-0135 P04	1:250	Vehicle Tracking (3 of 3)
Forecast Traffic Data		
5 yr road accident details		

No Departures from Standard were notified

APPENDIX B: Comments

C.1 The swept path shown for a tanker exiting the pump house to the west (turning left) overruns an area of third party land to the west of the access. This may not therefore be practicable, rendering the manoeuvre impossible with the proposed refuge location. It is suggested that this be discussed with Anglian Water at an early stage to confirm the viability of the proposal.

Designer's Response:

The tanker provision to the pump house facility is to be discussed in detail with Anglian Water.

C.2 It was noted that Dwg 0133 omits a section of existing on-street parking bays on the eastern side just south of the war memorial.

Designer's Response:

Noted that existing on-street parking bay was missing from drawing. This has now been added to Drg ...1033-P02.

